Skip to main content
Skip table of contents

setIndividualParameterModel

Update the individual parameter model. The following information is editable:

  • distribution: (character) vector giving the probability distribution of each parameter. The distribution can be one of "normal", "logNormal", or "logitNormal".

  • limits: (double) a list giving the distribution limits for each parameter with a "logitNormal" distribution

  • variability: (logical) a list giving, for each variability level, a vector with TRUE for each individual parameter that has variability or FALSE if not.

  • covariateModel: (logical) a list giving, for each individual parameter, a vector with TRUE for each covariate that is included in the model for that parameter or FALSE if not.

  • correlationBlocks: a list with, for each variability level, a list of correlations, where each correlation block is a vector of the parameter names included in that correlation. Parameters must have random effects to be included in correlations.

Usage

R
setIndividualParameterModel(...)

Arguments

...

A list of comma-separated pairs {[info] = [value]} (See example).

See also

getIndividualParameterModel to see the current individual parameter model settings

The components of the individual parameter model can be updated individually:
setIndividualParameterDistribution to update just the individual parameter distributions
setIndividualLogitLimits to update just the limits for parameters with a logit distribution
setIndividualParameterVariability to update just the individual parameter variability
setCovariateModel to update just the covariate model
setCorrelationBlocks to update just the correlation structure

Examples

R
initializeLixoftConnectors("monolix")
project_file <- file.path(getDemoPath(), "5.models_for_individual_parameters", "5.1.probability_distribution", "warfarin_distribution3_project.mlxtran")
loadProject(project_file)

# change the distribution of parameter V to be a logitNormal between 0 and 30
setIndividualParameterModel(list(distribution = c(V = "logitNormal"), limits = list(V = c(0, 30))))
getIndividualParameterModel()
#> $name
#> [1] "Tlag" "ka"   "V"    "Cl"  
#> 
#> $distribution
#>          Tlag            ka             V            Cl 
#>   "logNormal"   "logNormal" "logitNormal"   "logNormal" 
#> 
#> $limits
#> $limits$V
#> [1]  0 30
#> 
#> 
#> $formula
#> [1] "log(Tlag) = log(Tlag_pop) + eta_Tlag\nlog(ka) = log(ka_pop) + eta_ka\nlog( V / ( 30 - V ) ) = log( V_pop / ( 30 - V_pop ) ) + eta_V\nlog(Cl) = log(Cl_pop) + eta_Cl\nCorrelations\n\tID : {Cl, V}, {Tlag, ka}\n"
#> 
#> $variability
#> $variability$id
#> Tlag   ka    V   Cl 
#> TRUE TRUE TRUE TRUE 
#> 
#> 
#> $covariateModel
#> $covariateModel$Tlag
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$ka
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$V
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$Cl
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> 
#> $correlationBlocks
#> $correlationBlocks$id
#> $correlationBlocks$id[[1]]
#> [1] "Cl" "V" 
#> 
#> $correlationBlocks$id[[2]]
#> [1] "Tlag" "ka"  
#> 
#> 
#> 

# remove correlation and add covariate wt on Cl
setIndividualParameterModel(list( correlationBlocks = list(id = list()), 
                                  covariateModel = list(Cl = c(sex = FALSE, age = FALSE, wt = TRUE))) )
getIndividualParameterModel()
#> $name
#> [1] "Tlag" "ka"   "V"    "Cl"  
#> 
#> $distribution
#>          Tlag            ka             V            Cl 
#>   "logNormal"   "logNormal" "logitNormal"   "logNormal" 
#> 
#> $limits
#> $limits$V
#> [1]  0 30
#> 
#> 
#> $formula
#> [1] "log(Tlag) = log(Tlag_pop) + eta_Tlag\nlog(ka) = log(ka_pop) + eta_ka\nlog( V / ( 30 - V ) ) = log( V_pop / ( 30 - V_pop ) ) + eta_V\nlog(Cl) = log(Cl_pop) + beta_Cl_wt*wt + eta_Cl\n"
#> 
#> $variability
#> $variability$id
#> Tlag   ka    V   Cl 
#> TRUE TRUE TRUE TRUE 
#> 
#> 
#> $covariateModel
#> $covariateModel$Tlag
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$ka
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$V
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$Cl
#>   sex   age    wt 
#> FALSE FALSE  TRUE 
#> 
#> 

# remove variability (random effects) on parameter ka
setIndividualParameterModel(list(variability = list(id = c(ka = FALSE))))
getIndividualParameterModel()
#> $name
#> [1] "Tlag" "ka"   "V"    "Cl"  
#> 
#> $distribution
#>          Tlag            ka             V            Cl 
#>   "logNormal"   "logNormal" "logitNormal"   "logNormal" 
#> 
#> $limits
#> $limits$V
#> [1]  0 30
#> 
#> 
#> $formula
#> [1] "log(Tlag) = log(Tlag_pop) + eta_Tlag\nlog(ka) = log(ka_pop)\nlog( V / ( 30 - V ) ) = log( V_pop / ( 30 - V_pop ) ) + eta_V\nlog(Cl) = log(Cl_pop) + beta_Cl_wt*wt + eta_Cl\n"
#> 
#> $variability
#> $variability$id
#>  Tlag    ka     V    Cl 
#>  TRUE FALSE  TRUE  TRUE 
#> 
#> 
#> $covariateModel
#> $covariateModel$Tlag
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$ka
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$V
#>   sex   age    wt 
#> FALSE FALSE FALSE 
#> 
#> $covariateModel$Cl
#>   sex   age    wt 
#> FALSE FALSE  TRUE 
#> 
#> 

JavaScript errors detected

Please note, these errors can depend on your browser setup.

If this problem persists, please contact our support.