Skip to main content
Skip table of contents

setCovariateModel

Set which are the covariates influencing individual parameters present in the project. Call getIndividualParameterModel to get a list of the individual parameters present within the current project. and getCovariateInformation to know which are the available covariates for a given level of variability and a given individual parameter.

Usage

R
setCovariateModel(...)

Arguments

...

A list of comma-separated pairs {parameterName = { covariateName = (logical)isIncluded, ...} } (see example)

See also

getCovariateInformation to see available covariates
getIndividualParameterModel to see the current individual parameter model settings
setIndividualParameterModel to change the individual parameter model

The components of the individual parameter model can be updated individually:
setIndividualParameterDistribution to update just the individual parameter distributions
setIndividualLogitLimits to update just the limits for parameters with a logit distribution
setIndividualParameterVariability to update just the individual parameter variability
setCorrelationBlocks to update just the correlation structure

Examples

R
initializeLixoftConnectors("monolix")
loadProject( file.path(getDemoPath(), "1.creating_and_using_models", "1.1.libraries_of_models", "theophylline_project.mlxtran") )
setCovariateModel( ka = c( SEX = TRUE, WEIGHT = TRUE),
                   V = c( WEIGHT = TRUE ) )
getIndividualParameterModel()$covariateModel
#> $ka
#>    SEX WEIGHT 
#>   TRUE   TRUE 
#> 
#> $V
#>    SEX WEIGHT 
#>  FALSE   TRUE 
#> 
#> $Cl
#>    SEX WEIGHT 
#>  FALSE  FALSE 
#> 

JavaScript errors detected

Please note, these errors can depend on your browser setup.

If this problem persists, please contact our support.