plotObservationsVsPredictions
[Monolix] Plot Observation VS Prediction
Plot the observation vs the predictions.
Usage
plotObservationsVsPredictions(
obsName = NULL,
predictions = c("indiv"),
settings = list(),
preferences = list(),
stratify = list()
)
Arguments
- obsName
(character) Name of the observation (in dataset header). By default the first observation is considered.
- predictions
(character) LIst of predictions to display: population prediction ("pop"), individual prediction ("indiv") (default c("indiv")).
- settings
List with the following settings
indivEstimate
(character) Calculation of individual estimates: conditional mean ("mean"), conditional mode with EBE's ("mode"), conditional distribution ("simulated") (default "mode").useCensored
(logical) Choose to use BLQ data (TRUE) or to ignore it (FALSE) to compute the statistics (default TRUE).censoring
(character) BLQ data can be simulated ('simulated'), or can be equal to the limit of quantification ('loq') (default 'simulated').obs
(logical) - If TRUE observations are displayed as dots (default TRUE).cens
(logical) - If TRUE censoring data are displayed as red dots (default TRUE).spline
(logical) - If TRUE add spline (default FALSE).identityLine
(logical) - If TRUE add identity line (default TRUE).predInterval
(logical) - If TRUE add 90% prediction interval (default FALSE).legend
(logical) add (TRUE) / remove (FALSE) plot legend (default FALSE).grid
(logical) add (TRUE) / remove (FALSE) plot grid (default TRUE).xlog
(logical) add (TRUE) / remove (FALSE) log scaling on x axis (default FALSE).ylog
(logical) add (TRUE) / remove (FALSE) log scaling on y axis (default FALSE).ncol
(integer) number of columns when facet = TRUE (default 4).xlim
(c(double, double)) limits of the x axis.ylim
(c(double, double)) limits of the y axis.fontsize
(integer) Plot text font size.scales
(character) Should scales be fixed ("fixed"), free ("free", the default), or free in one dimension ("free_x", "free_y") (default "free").ylab
(character) label on y axis (default "Observations").
- preferences
(optional) preferences for plot display, run getPlotPreferences("plotObservationsVsPredictions") to check available displays.
- stratify
List with the stratification arguments:
groups
- Definition of stratification groups. By default, stratification groups are already defined as one group for each category for categorical covariates, and two groups of equal number of individuals for continuous covariates. To redefine groups, for each covariate to redefine, specify a list with:name character covariate name (e.g "AGE"
)definition (vector(continuous) || list>(categorical)) For continuous covariates, vector of break values (e.g c(35, 65)
). For categorical covariates, groups of categories as a list of vectors(e.glist(c("study101"), c("study201","study202"))
)split
(vector) - Vector of covariates used to split (i.e facet) the plot (by default no split is applied). For instancec("FORM","AGE")
.filter
(list< list> >) - List of pairs containing a covariate name and the vector of indexes or categories (for categorical covariates) of the groups to keep (by default no filtering is applied). For instance,list("AGE",c(1,3))
to keep the individuals belonging to the first and third age group, according to the definition ingroups
. For instance,list("FORM","ref")
using the category name for categorical covariates.color
(vector) - Vector of covariates used for coloring (by default no coloring is applied). For instancec("FORM","AGE")
.colors
- Vector of colors to use whencolor
argument is used. Takes precedence over colors defined inpreferences
. For instancec("#ebecf0","#cdced1","#97989c")
.individualSelection
- Ids to display (by default the 12 first ids are displayed) defined as:indices
(vector) - Indices of the individuals to display (by default, the 12 first individuals are selected). If occasions are present, all occasions of the selected individuals will be displayed. Takes precedence overids
. For instancec(5,6,10,11)
.isRange
(logical) - If TRUE, all individuals whose index is inside [min(indices), max[indices]] are selected (FALSE by default). Forced to FALSE ifids
is defined.ids
(vector) - Names of the individuals to display. If occasions are present, all occasions of the selected individuals will be displayed. For instancec("101-01","101-02","101-03")
. If ids are integers, can also bec(1,3,6)
. Ignored ifindices
is defined.
Value
A ggplot object if one prediction type,
A TableGrob object if multiple plots (output of grid.arrange)
See also
Examples
initializeLixoftConnectors(software = "monolix")
project <- file.path(getDemoPath(), "1.creating_and_using_models",
"1.1.libraries_of_models", "theophylline_project.mlxtran")
loadProject(project)
runPopulationParameterEstimation()
runConditionalDistributionSampling()
runConditionalModeEstimation()
plotObservationsVsPredictions()

plotObservationsVsPredictions(predictions = "pop")

plotObservationsVsPredictions(prediction = "indiv", settings = list(indivEstimate = "simulated"))

plotObservationsVsPredictions(settings = list(indivEstimate = "mean", spline = TRUE))

plotObservationsVsPredictions(settings = list(indivEstimate = "mode", predInterval = TRUE))

plotObservationsVsPredictions(settings = list(ylog = TRUE, xlog = TRUE))

# stratification
plotObservationsVsPredictions(stratify = list(filter = list("SEX", "F")))

plotObservationsVsPredictions(stratify = list(split = "WEIGHT",
groups = list(name = "WEIGHT", definition = 75)))

plotObservationsVsPredictions(stratify = list(color = "WEIGHT",
groups = list(name = "WEIGHT", definition = 75)))

plotObservationsVsPredictions(settings = list(legend = T),
stratify = list(color = c("SEX", "WEIGHT"),
groups = list(name = "WEIGHT", definition = 70)))

# display multiple predictions
plotObservationsVsPredictions(predictions = c("pop", "indiv"))

#> TableGrob (1 x 1) "arrange": 1 grobs
#> z cells name grob
#> 1 1 (1-1,1-1) arrange gtable[arrange]