
Monolix
Version 4.2.2

March 2013

A software for the analysis of nonlinear mixed effects models

Maximum likelihood estimation
Model selection

Hypothesis testing
Graphical analysis

Data simulation
. . .

S
T M H

I M P O R T A N C E S A M P L I N G
C M M
H C
A S
S A

S I M U L A T E D A N N E A L I N G
I M
C

M E T R O P O L I S
M

Monolixr(MOdèles NOn LInéaires à effets miXtes) is a platform of reference for model-
based drug development. It combines the most advanced algorithms with unique ease of use.

Pharmacometricians of preclinical and clinical groups can rely on Monolix for popula-
tion analysis and to model PK/PD and other complex biochemical and physiological processes.
Monolix is an easy, fast and powerful tool for parameter estimation in non-linear mixed effect
models, model diagnosis and assessment, and advanced graphical representation.

Monolix is the result of a ten years research program in statistics and modeling, led by
INRIA (Institut National de la Recherche en Informatique et Automatique) on non-linear mixed
effect models for advanced population analysis, PK/PD, pre-clinical and clinical trial modeling
& simulation.

Monolix is based on the Matlab scientific environment published by Mathworks. Monolix
is also available as a full-featured standalone software compiled with Matlab libraries, and
therefore does not require to purchase Matlab licences.

Contents

1 Introduction 8
1.1 The objectives . 8

2 Installing and running Monolixr 10
2.1 Downloading packages . 10
2.2 Installation . 11

2.2.1 Prerequisites . 11
2.2.2 About Installer . 14
2.2.3 Directory structure . 14
2.2.4 About Plugins . 16
2.2.5 Running Monolix . 16
2.2.6 Installation use cases . 17
2.2.7 License . 19

2.3 ChangeLog . 30
2.4 Troubleshooting . 40

2.4.1 Downloading Monolix . 40
2.4.2 Running Monolix . 41

3 Using Monolix 42
3.1 Introduction . 42

3.1.1 The theophylline example . 43
3.2 The main window . 44
3.3 The “Data and Model” frame . 45

3.3.1 The data . 45
3.3.2 The model function . 48
3.3.3 The covariate model . 49
3.3.4 Creating and transforming covariates . 49
3.3.5 Distribution of the individual parameters . 52
3.3.6 The covariance model of the random effects . 52
3.3.7 The observations model . 53

3

CONTENTS

3.4 The “Initialization” frame . 54
3.4.1 Check initial fixed effects . 55
3.4.2 Use the last estimates . 55

3.5 The “Algorithm” frame . 55
3.6 The “Results” frame . 56
3.7 Executing tasks . 57

3.7.1 Estimation of the population parameters . 58
3.7.2 Estimation of the standard errors . 59
3.7.3 Estimation of the individual parameters . 62
3.7.4 Estimation of the log-likelihood . 63
3.7.5 Computing results . 64
3.7.6 Running several algorithms . 64
3.7.7 Algorithms convergence assessment . 65

3.8 Plots and results . 66
3.8.1 The graphics . 67
3.8.2 The tables . 75
3.8.3 The graphics menu bar . 75
3.8.4 Main interface Graphics Menu . 76
3.8.5 Stratify . 80
3.8.6 Settings . 80

3.9 Testing hypotheses . 87
3.10 Simulation . 88
3.11 Publishing the outputs . 89
3.12 The results folder . 89
3.13 Settings . 92

3.13.1 The population parameters estimation . 92
3.13.2 The individual parameters estimation . 93
3.13.3 The log-likelihood . 93
3.13.4 The results . 93
3.13.5 Predefined scenarios . 94

4 Advanced features 95
4.1 Libraries of models . 95
4.2 Pharmacokinetic and pharmacodynamic data . 96
4.3 Using priors on a fixed effect . 97
4.4 Categorical covariate model . 97
4.5 Model with censored data . 98

4.5.1 Modeling BLQ data . 98
4.5.2 Modeling interval censored data . 99

4 Monolix 4.2.2

CONTENTS

4.6 Model with inter-occasion variability . 100
4.7 Discrete data models . 103

4.7.1 ordered categorical data models . 103
4.7.2 count data models . 104
4.7.3 discrete Markov models . 105
4.7.4 hidden Markov models . 106
4.7.5 repeated time to event models (RTTE) . 107
4.7.6 joint modelling of continuous and discrete outputs 108

4.8 Complex residual error models . 109
4.8.1 autocorrelated residual errors . 110
4.8.2 residual errors for bounded data . 110

4.9 Complex PK models . 111
4.9.1 Complex administrations . 111
4.9.2 Steady-state . 112

4.10 Mixture models and model mixtures . 112
4.10.1 Mixture models . 113
4.10.2 Model mixtures . 113

4.11 Tables . 114
4.12 Using Monolix in Matlab command line or scripts . 115
4.13 Full script projects . 118
4.14 Preferences . 119

5 PerlMLX and the batch mode 122
5.1 Introduction . 122
5.2 Environment variables . 123
5.3 HMI mode . 124
5.4 Standalone mode . 126

5.4.1 Options . 126
5.4.2 Setting up the configuration file . 128

5.5 Batch mode in depth . 131
5.5.1 Running Monolix without PerlMLX . 131
5.5.2 Monolix Program options . 131
5.5.3 Example . 132

5.6 Monolix on cluster . 132
5.6.1 Cluster filesystem . 132
5.6.2 Task submission mechanism . 133
5.6.3 Example . 133

6 Validation suite 135
6.1 Introduction . 135

5 Monolix 4.2.2

CONTENTS

6.2 Prerequisites . 135
6.3 Combinations . 136
6.4 Extensive coverage through the demo projects . 136
6.5 Execution . 137

A The statistical models 142
A.1 The nonlinear mixed effects model . 142
A.2 Individual parameters model . 143

A.2.1 Examples of transformations . 143
A.2.2 Example of continuous covariate model . 144
A.2.3 Example of categorical covariate model . 144

A.3 The residual error model . 145
A.4 Multi-responses model . 146
A.5 Model with censored data . 147

A.5.1 BLQ data . 147
A.5.2 Interval censored data . 147

A.6 Inter-occasion variability . 148
A.7 Discrete data models . 148
A.8 Mixture models and model mixtures . 149

A.8.1 Mixture models . 149
A.8.2 Model mixtures . 149

A.9 Prior models . 150

B Preferences 151
B.1 General . 151
B.2 Graphic settings . 151

B.2.1 Categorized Data . 152
B.2.2 Covariates . 152
B.2.3 Parameters distribution . 153
B.2.4 Individual fits . 153
B.2.5 Joint distribution . 154
B.2.6 Predictions vs observations . 154
B.2.7 Residuals . 155
B.2.8 Spaghetti . 156
B.2.9 Prediction distribution . 156
B.2.10 VPC . 157
B.2.11 NPC - BLQ . 157
B.2.12 Time to event (Kaplan-Meier) . 158
B.2.13 Transition probabilities . 158
B.2.14 Prior distribution . 159

6 Monolix 4.2.2

CONTENTS

B.2.15 Individual contribution . 159
B.2.16 Convergence of SAEM . 159

B.3 Session related settings . 160
B.3.1 session . 160
B.3.2 project . 160
B.3.3 gui . 160

7 Monolix 4.2.2

Chapter 1

Introduction

1.1 The objectives

The objectives of Monolix are to perform:

1. Parameter estimation for nonlinear mixed effects models

- computing the maximum likelihood estimator of the population parameters, without
any approximation of the model (linearization, quadrature approximation, . . .), using
the Stochastic Approximation Expectation Maximization (SAEM) algorithm,

- computing standard errors for the maximum likelihood estimator

- computing the conditional modes, the conditional means and the conditional standard
deviations of the individual parameters, using the Hastings-Metropolis algorithm

2. Model selection

- comparing several models using some information criteria (AIC, BIC)

- testing hypotheses using the Likelihood Ratio Test

- testing parameters using the Wald Test

3. Easy description of pharmacometric models (PK, PK-PD, discrete data) with the Mlxtran
language

4. Goodness of fit plots

5. Data simulation.

8

The objectives

Monolix handles a broad spectrum of models including models defined with differential equa-
tions, left censored data, discrete data models, repeated time to events, hidden Markov models,
mixture models,. . .

Theoretical analysis of the algorithms used in this software can be found in [9, 10, 13, 14, 1].
Several application of SAEM in agronomy [19], animal breeding [12] and PKPD analysis [4, 17,
23, 25, 27, 28, 3, 29] have been published by several members of the Monolix group and other
authors. Several applications to PKPD analysis and several extensions to complex models were
also proposed during the last PAGE (Population Approach Group in Europe) meetings ([2, 16, 15,
20, 22, 24, 26, 8, 18, 7] as well as a comparison of estimation algorithms [11], (http://www.page-
meeting.org).

The aim of the present User Guide is to help a Monolix beginner to discover the software
abilities. Chapter 2 contains the installation guide, Chapter 3 explains how to use Monolix
and its graphical interface. Advanced Features and examples are detailed in Chapter 4. And the
use of the software without the graphical interface and batch mode is described in Chapter 5.

The statistical models handled by Monolix are given in Appendix A and a list of visual
preferences for result graphics is given in Appendix B.

The user guide does not cover Mlxtran programming in details, and is therefore completed
by two additional documents:

• modelMLXTRANtutorial.pdf is a slidedeck tutorial on how to describe pharmacometric
models with Mlxtran .

• ProjectMLXTRAN.pdf presents how to easily program and customize complete Monolix
projets with Mlxtran .

9 Monolix 4.2.2

Chapter 2

Installing and running Monolixr

2.1 Downloading packages

The Monolix packages can be downloaded through the download manager hosted at
http://download.lixoft.com. The download manager is available for users provided with an
access key. Different Monolix packages are available, depending on the Matlab version and of
the operating system. Monolix currently supports Windows XP/Vista/Seven 32bits, Linux (all
common distributions) 32/64 bits. On Windows XP/Vista/Seven 64 bits, Monolix standalone
version can run in 32 bits mode.

Choice of Monolix versions

• Matlab versions:

– Linux matlab-r2010b-r2011a-r2011b-r2012a (64 bits)

– Linux matlab-r2009a-r2010a (32 bits)

– Linux matlab-r2010b-r2011a-r2011b-r2012a (32 bits)

– Linux matlab-r2009a-r2010a (64 bits)

– Windows (seven and vista) matlab-r2009a-r2010a (32 bits)

– Windows (seven and vista) matlab-r2010b (32 bits). Due to bugs in Matlab 2010b,
it is strongly recommanded to use Matlab 2010b-SP1.

• Standalone versions:

– Linux (32 bits)

– Linux (64 bits)

10

Installation

– Windows (32 bits)

– Windows (64 bits)1

2.2 Installation

2.2.1 Prerequisites

perl is required to run perlScripts and the validation suite; it is not required otherwise.

Linux specifics

• install sharutils : uudecode is required to uncompress the Monolix package;

• make sure you have gcc/g++/make installed or install them.

Windows 64bits specifics

The 32 bits standalone version of Monolix runs fine on Windows 7 64bits. You will need
to install the 64 bits Windows version of Monolix in any of these situations:

• On other 64 bits versions of Windows (non Windows 7);

• If you wish to use a Matlab version of Monolix .

• If you simply prefer to use a 64bits version of standalone Monolix , although in practice
this should not have an impact on the performance.

The installer of the 64 bits Windows version of Monolix executes the Windows SDK in-
staller. This SDK embeds the C++ compiler required to generate Mlxtran modules.The
installation process is as follows:

1Monolix will run in 32 bits mode

11 Monolix 4.2.2

Installation

Welcome page of the SDK installer: click on
’next’ button to continue;

License agreement page: accept the agreement
by selecting ’I agree’, then click on ’next’ button to
continue;

Choose the installation path. The proposed di-
rectories are required by Monolix ;

The component used by Monolix are the com-
piler only, therefore it is not necessary to install doc-
umentation and samples.

12 Monolix 4.2.2

Installation

On ’Begin installation’ page, click on ’next’ but-
ton to continue;

On ’Installation complete’ page click on ’finish’
button to continue;

After completion of the SDK installation procedure, the Monolix installer resumes the
Monolix installation procedure.

If the SDK was already installed on the computer, the SDK installer will propose a list of
actions:

No action is necessary, click on ’Cancel’;

13 Monolix 4.2.2

Installation

Confirm the ’Cancel’ choice by clicking on ’Yes’
button.

2.2.2 About Installer

• Linux : the installer is a self-extractable archive.

– run the following command (depending on your os version):
#> sh Monolix-4.2.2-matlab2010a-linux32.bin
or
#> sh Monolix-4.2.2-matlab2010bSP1-linux32.bin
or
#> sh Monolix-4.2.2-standalone2008b-linux32.bin
or
#> sh Monolix-4.2.2-matlab2010a-linux64.bin
or
#> sh Monolix-4.2.2-matlab2010bSP1-linux64.bin
or
#> sh Monolix-4.2.2-standalone2008b-linux64.bin

– you can specify the target installation directory by giving the path as argument
– a directory containing Monolix will be created in the directory installation path

• Windows

– copy the installer on your Desktop or in your windows temporary directory
– Double click on the executable and follow the instructions.

2.2.3 Directory structure

The Monolix directory structure is divided in two parts:

• the software directory containing the Monolix program,

• the personal user directory containing the Monolix workspace and documentation

14 Monolix 4.2.2

Installation

Installation directory

Monolix...Monolix root directory
monolix413...Monolix version directory

bin..tools directory
config...configuration files

Demos.................set of demos (copied in Monolix user directory)
graphics .. graphics configurations

listOfGraphics graphics predefined configurations
project.............. graphics default configurations for Mlxtran
settings............................ graphics default configurations

scenario.. predefined scenarii
session................................... monolix session configuration

factory ..Mlxtran c++ API
jar ...Java library
lib ...C++ library
matlab ..Monolix main program

libraires ...models libraires
mlxCoreMonolix core : all algorithms (SAEM, FIM, ...)
mlxDelegateglue to present Monolix project (HMI, batch, ...)
mlxIOinput / output components (read .mat, .xmlx, ...)
mlxMathmisc mathematical functions
mlxTools some tools (mat to xmlx)
mlxUseful ...generic components

perlScripts ..Perl scripts
referencereference project for the validation suite
toolsexternal tool used by Monolix (cmake)

User directory

The user directory is created after the first launch of Monolix. This directory contains the
basic configuration of Monolix, documentation, demos, log files, license file,

monolixData..Monolix root directory
monolix413...Monolix version directory

doc ..Monolix documentation
log..log files
script_modules...................................compiled Mlxtran modules
perlScripts ..Perl scripts
work..user working directory

Demos...Modifiable demos
license .. tools directory
config..configuration files

15 Monolix 4.2.2

Installation

tmp..........................set of demos (copied in Monolix user directory)

2.2.4 About Plugins

Monolix can embed the BiM plugin, a faster and more accurate ODE solver, not included
by default due to its license restrictions. The plugin must therefore be downloaded and installed
separately:

• Linux

– libBim.tgz (using the command: tar xfz libBim.tgz or your graphical archiver)

– copy the files stored in the directory libBim into the library directory of Monolix :

∗ for the Matlab version : <install path>/lib
∗ for the standalone version : <install path>/bin/Monolix_mcr/runtime/lib

• Windows : copy libBim.dll into the library directory of Monolix :

– for the matlab version : <install path>\lib

– for the standalone version : <install path>\bin\Monolix_mcr\runtime\lib
With the standalone version of Monolix the directory <install path> is located
at:

∗ under Window XP or Windows Server 2003:
c:\Documents And Settings\All Users\Application Data
∗ under Window Vista, Windows 7 or Windows Server 2008:
c:\ProgramData

Important notice: these directories may be hidden by the operating system, thus
you have to configure your file browser for access.

2.2.5 Running Monolix

• Linux

– Matlab version

∗ start Matlab
∗ go to directory ’<install path>/matlab’ and type monolix.

– Standalone version: go to ’<install path>/bin’ and type ./Monolix.sh.

• Windows

16 Monolix 4.2.2

Installation

– Matlab version
∗ start Matlab
∗ go to directory <install path>\matlab’ and type monolix.

– Standalone version: go to ’<install path>\bin’ and type Monolix.bat.

2.2.6 Installation use cases

Desktop

Monolix is installed on the computer of the user and the user has a personal activation key
(see Section 2.2.7 Desktop license). After the installation or during the first startup of Monolix
a popup titled ’Lixoft Activate’ appears and asks the activation key. When the activation pro-
cedure is finished, Monolix will be configured (typically a directory monolixData is created in
the user home directory) and launched.

Desktop with a shared Monolix installation

Monolix is installed on a remote server and the user accesses to Monolix through a shared
directory (via CIFS, Network drive, NFS, ...) and the user has a personal activation key (see
Section 2.2.7 Desktop license).
During the first startup of Monolix a popup title ’Lixoft Activate’ appears and asks the acti-
vation key. When the activation procedure is finished, Monolix will be configured (typically a
directory monolixData is created in the user home directory) and launched.

Application server with a shared Monolix installation

Monolix is installed on a remote server using the procedure described in Section 2.2.7
’Floating license’. The license file (obtained during activation procedure) is copied in the direc-
tory

• <monolix user install path>/config/system/access for the Matlab version of Monolix

• or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version of Monolix .

The user accesses to Monolix through a shared directory (via CIFS, Network drive, NFS, ...).
The user runs Monolix directly, no activation is required. Nevertheless, when a user runs

17 Monolix 4.2.2

Installation

Monolix a license token is taken.
If all license tokens are used (too many users run Monolix in the same time), a popup titled
’Lixoft activate’ appears and the user is supposed to wait until at least one token is released.

Application server with a remote connection

With a floating license Monolix is installed on a remote server using the procedure de-
scribed in Section 2.2.7 ’Floating license’. The license file (obtained during activation procedure)
is copied in the directory

• <monolix user install path>/config/system/access for the Matlab version of Monolix

• or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version of Monolix .

The user accesses to Monolix using a remote desktop application.
The user runs Monolix directly, no activation is required. Nevertheless, when a user runs
Monolix a license token is taken.
If all license tokens are used (too many users run Monolix in the same time), a popup titled
’Lixoft activate’ appears and the user is supposed to wait until at least one token is released.

With desktop licenses Monolix is installed on a remote server, the user accesses to Monolix
using a remote desktop application and has a personal activation key (see Section 2.2.7 Desktop
license).
During the first startup of Monolix a popup title ’Lixoft Activate’ appears and asks the acti-
vation key. When the activation procedure is finished, Monolix will be configured (typically a
directory monolixData is created in the user home directory) and launched.

Application server with a desktop installation

Monolix is installed on a remote server using the procedure described in Section 2.2.7
’Floating license’. Each Monolix user is supposed to have a copy of the license file obtained
during the activation procedure. After the installation or during the first startup of Monolix
, a popup titled ’Lixoft Activate’ appears. The tab ’With License file’ has to be selected. The
user is supposed to browse to the copy of the license file to activate Monolix . When a user
runs Monolix a license token is taken.
If all license tokens are used (too many users run Monolix in the same time), a popup titled
’Lixoft activate’ appears and the user is supposed to wait until at least one token is released.

18 Monolix 4.2.2

Installation

Cluster installation with a shared Monolix installation

Monolix is installed on a master server using the procedure described in Section 2.2.7
’Floating license’. The license file (obtained during activation procedure) is copied in the direc-
tory

• <monolix user install path>/config/system/access for the Matlab version of Monolix

• or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version of Monolix .

Each cluster node accesses to Monolix through a shared directory (via CIFS, Network drive,
NFS, ...).
The user runs Monolix directly, no activation is required. Nevertheless, when a user runs
Monolix a license token is taken (there is no limit of runs on cluster nodes).
If all license tokens are used (too many users run Monolix in the same time), a popup titled
’Lixoft activate’ appears and the user is supposed to wait until at least one token is released.

Cluster installation with Monolix installed on each node

License server (RLM) has to be installed on a master server and the license file is download
using the procedure described in Section 2.2.7 ’Floating license’. Monolix is installed on each
cluster. During this installation it is not necessary to activate Monolix when the popup titled
’Lixoft activate’ appears (just close the popup). The license file (obtained previously) is supposed
copied in the directory

• <monolix user install path>/config/system/access for the Matlab version of Monolix

• or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version of Monolix

of each node.

2.2.7 License

Monolix licenses can be of the following types:

• Individual license - named user. The named user can install and run Monolix on a
predetermined number of different computers.

19 Monolix 4.2.2

Installation

• Floating license - concurrent access. The license is hosted by a license server, and Monolix
can either run on a server or individual workstations.

Remark: the former license management tool uses a license file (license.ini); this type of
license is deprecated since Monolix version 4.1.3.

Desktop license

The activation key (provided by Lixoft) must be entered in the dialog box titled ‘Lixoft
license activation’ (‘With activation key’ tab). This dialog box only appears when no license is
available on the user’s computer or when the license expires.

Floating license

The use of a floating license requires to set up a license server. In this case there are two
installation strategies for Monolix users:

• install Monolix on a directory shared by all Monolix users,

• install Monolix on each user’s computer and copy the license file obtained as described
below into the directory:

– <monolix user install path>/config/system/access for the Matlab version of
Monolix ,

– or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for
the standalone version of Monolix .

After the installation process, when the ’Lixoft activate window’ appears just close the
window (do not enter the activation key of the floating license). Then, start the RLM server,
located at:

20 Monolix 4.2.2

Installation

• <monolix install path>/tools/rlm/rlm{.exe} for the Matlab version of Monolix ,

• or <monolix install path>/bin/Monolix_mcr/runtime/tools/rlm/rlm{.exe} for the
standalone version of Monolix .

At this step there is no license available yet; the IT manager should use the RLM web server to
download the license by following the procedure below:

1. In the web browser, type <IP>:5054, where <IP> is the IP address of the computer hosting
the RLM server (e.g. 192.168.46.248:5054).
Notice that the RLM server opens two ports : 5053 and 5054. The first port (5053) is a
service port used for the transactions of licenses. The second port (5054) is the RLM web
server port used to access to the RLM configuration through a web browser.
It is possible that one or both ports may have been used by another application.

• If the web server port (5054) is not available you can launch RLM server with a new
port by using the program option -ws (e.g: rlm -ws 5055) in this case, the access
to RLM configuration through a web browser is done using the address <IP>:<NEW
PORT> (e.g. 192.168.46.248:5055).

• If the server port (5053) is not available, a file config.conf has to be created in the
rlm directory and has to contain the following information:
HOST <IP> <MAC ADDRESS> <NEW PORT>
e.g.
HOST 192.168.46.245 a8c0f82e 5060

21 Monolix 4.2.2

Installation

2. Begin license activation:

22 Monolix 4.2.2

Installation

3. Enter the RLM activation url : activate.lixoft.net. And click on Next button.

If the rlm server does not have Internet access, the license has to be created by Lixoft .
Send a mail to support@lixoft.com with the following informations:

• Mac address of the computer hosting the RLM server

• IP address of the computer hosting the RLM server

23 Monolix 4.2.2

Installation

Lixoft will send in return a ’.lic’ file which has to be copied in the directory

• <monolix install path>/config/system/access (Matlab version of Monolix)

• <monolix install path>/bin/Monolix_mcr/runtime/config/system/access (stan-
dalone version of Monolix).

At this step, the installation of Monolix is complete.

4. Activate the license.

Fill the ISV input with the string ’lixoft’ (without the quotes) and the License activation
key with the activation key provided by Lixoft (key format is xxxx-xxxx-xxxx-xxxx)

24 Monolix 4.2.2

Installation

5. Enter (at maximum) the number of bought licenses, then click on Next button

Notice, the number of licenses cannot exceed the number of bought licenses.

25 Monolix 4.2.2

Installation

6. Select the license directory and file.

In the field named License file to create write the full path to license file
<monolix install path>/config/system/access/myfloat.lic for the Matlab version
of Monolix
or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version.
e.g: if the Monolix (matlab version) installation directory is /media/share/monolix the
input field name License file to create should contain
/media/share/monolix/config/access/myfloat.lic

This license file has to be copied on each installation of Monolix :

• If Monolix is installed on a shared space (i.e. each node of the cluster has an access
to this directory), copy the license file into the directory
<monolix install path>/config/system/access/ for the Matlab version of Monolix
or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for
the standalone version.
Make sure that the Monolix directory is accessible from each cluster node.

26 Monolix 4.2.2

Installation

Example (with a Matlab version of Monolix)

– Monolix is installed on the computer master-computer in the directory:
/usr/local/monolix/.
The license is in the directory :
/usr/local/monolix/config/access/

– The RLM server is run on the computer master-computer.
– Cluster computers mount the directory /usr/local/monolix/.
– Each monolix user runs Monolix from the previously mounted directory.

• If Monolix is installed on each node of the cluster, copy the license file on each
computer in the directory <monolix install path>/config/system/access for the
Matlab version of Monolix or
<monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version.

Example

– The RLM server is executed on the computer master-server.
– Monolix is installed on each cluster node of the cluster.
– The license file is copied on each cluster node in the directory <monolix

install path>/config/system/access/ for the Matlab version of Monolix
or <monolix install path>/bin/Monolix_mcr/runtime/config/system/access
for the standalone version.

– Each monolix user runs Monolix from the cluster node.

27 Monolix 4.2.2

Installation

7. Stop the server manually and restart it from the directory (or use option -c)

• <monolix install path>/config/system/access/ for the Matlab version

• <monolix install path>/bin/Monolix_mcr/runtime/config/system/access for the
standalone version of Monolix .

Now RLM is running with the provided license. This is verified in the web interface by
clicking on status button.

28 Monolix 4.2.2

Installation

8. RLM Server : server hostname and port considerations.
If for any reason, the server port or the server hostname is not registered in a DNS, it is
possible to change these informations directly on licence file.
The line HOST <hostname> <mac> <port> can be changed by HOST <rlm server ip> <mac>
<new port>.

9. RLM Server : firewall considerations.
If the RLM server is behind a firewall, the port 5053, 5054 and the ISV port have to be
opened.
The ISV port can be set directly in license file by changing the ISV line as follow:

...
ISV lixoft port=<your ISV port>
...

10. Managing RLM server :
The documentation of the management of the RLM server provided by Reprise Software
is available at
http://www.reprisesoftware.com/RLM_Enduser.html

29 Monolix 4.2.2

ChangeLog

Roaming license

RLM has the ability to allow a floating license to roam to a system which will subsequently
be disconnected from the network for a short period of time. The resulting license can be used
for the number of days specified when the license was set to roam, and is checked back in
automatically at the end of this. In addition the user can return the roamed license back to
license pool early if this is desired.
See License activate tools (which can be launched from the Monolix interface, in tools
menu)

This feature is enabled on demand. An extra activation key will be provided by Lixoft
and the procedure to get the roaming license feature is identical to the installation of a float-
ing license. To enable this feature, the file system.xmlx (stored in directory <monolix install
path>/config/ -Matlab version- or <monolix install path>/bin/Monolix_mcr/runtime/config/
-standalone version of Monolix - must be modified by setting to "on" the roaming option:

<?xml version="1.0" encoding="utf-8"?>
<monolix>

<preference>
<session>

<userPath windows="%USERPROFILE%" linux="$HOME"/>
<license activation="http://activate.lixoft.net" roaming="on"/>

</session>
</preference>

</monolix>

2.3 ChangeLog

1 Monolix 4.2.2 (2013 -03 -15)
2 Bugs Fixes:
3 - MLXTran Project
4 - fixed omega and error model parameters was not correctly saved

when they were set as ’Fixed ’

30 Monolix 4.2.2

ChangeLog

5 - load data file error when the data path was not ended by a ’/’
6 - under Windows OS, when the result folder is not the project

folder , the path was prefixed by a ’/’
7 - parser did not load correlation block
8
9 - Graphics : Spaghetti plot

10 - error when there are censored data on several outputs (index out
of bounds)

11
12 - MLXTRAN model :
13 - a zero -order dose absorption (or infusion) combined with a lag -

time could raise an error of bad dimension if the end of the
absorption followed the lagged dose before the next record

14 - the autocorrelation was not correctly set when the error model
is defined inside the structural model

15
16 - GUI
17 - when the error model is defined in the structural model and it

is changed from constant or proportional to combined , some
parameters became fixed to 0

18 - problem handling IOV + categorical covariates dependency on
omegas

19 - problem with Extensive workflow
20 - problem with "View the Data" when the number of outputs in the

dataset is different than the number of outputs in the
structural model

21 - issues handling covariates with only one category
22 - error when loading project when there were results computed with

version prior to 4.2.0 with censored data
23 - Hypothesis test on residual error interface , allows only to

change continuous error models that are not defined in the
structural model

24
25 - Algorithms:
26 - conditional mode estimation did not worked for IOV when there

are not variaibility at all
27 - projects with autocorrelation and censored data crashed
28 - log -likelihood estimation crashed when using band error model

and the structural model returned values outside the band
29 - Axe titles were not correctly shown with correlation and

discrete outputs
30 - inter -occasion variability
31 - issues when there was no variability at the first or at the

last occasion level
32 - issues when using correlations in iov
33 - Mixtures
34 - BSMM + autocorrelation failed
35 - BSMM with several outputs failed

31 Monolix 4.2.2

ChangeLog

36 - issues when using several latent covariates
37 - conditional expectation estimation failed when using several

MC chains
38 - Bayesian analysis failed if there were covariates with more than

2 categories
39
40 - Monolix user API
41 - Tables with individual contribution to log -likelihood (

indContTable) and covariates information summary (covTable) did
not work

42
43 Enhancements:
44 - GUI
45 - Errors due to problems loading results does not stop the load of

project
46
47 - Algorithms
48 - Covariates with only one value or category are not accepted

anymore for population parameter estimation
49
50 - Monolix user API
51 - documentation updated
52 - Arguments ’Toggle ’ changed to ’Workflow ’ to reduce ambiguity
53 - Added new function to know if Monolix packages is compatible

with Matlab version
54
55 --------------
56
57 Monolix 4.2.1 (2013 -02 -15)
58 Bugs Fixes:
59 - MLXTRAN Project : in STRUCTURAL_MODEL section resolved problem

with path relative to %MLXPROJECT%
60 - mlxEditor , mlxPerlScript : under Suse Linux OS , conflict with

libstdc ++ and Qt librairies installed on the OS.
61 - Graphics : Kaplan Meier
62 - mean normalization
63 - survival curve: case of censured data
64 - simulations where wrong in presence of correlation between

individual parameters
65 - MLXTRAN Model :
66 - Events could be close at a numerical epsilon for the solver , but

not for the solver driver
67 Rarely , it resulted into an explicit integration failure ,

returning "NaN"
68 - For the simulation of RTTE models , the ordering of the output

names had to be alphabetical
69 - Not declaring all regression variables that where selected from

the data set crashed the application.

32 Monolix 4.2.2

ChangeLog

70 - Declaring some PK without actual doses within the data set
raised an error.

71 - Using the deprecated syntax with several lagged compartments
returned "NaN"

72 - Algorithms
73 - Error when some subjects had no doses in conditional mode

computation
74 - GUI
75 - "Display the data" button did not update the information when

the dataset was changed after running algorithms
76 - Convergence assessment GUI failed when there where only one

individual parameter
77 - structural models with several dots (.) were not compiled when

clicking in the compile button in the Model selection GUI
78 - projects with more outputs in structural model than observations

in dataset caused an error when it is loaded
79 - the editor was not saved in the preference file
80 - Convergence assessment graphics did not handled correctly when

there were not variances on some parameters or their covariate
dependence

81
82 Enhancements:
83 - add possibility to configure the compiler (used to create

Structural Model plugins) through the file ’system.xmlx ’
84 - user API:
85 - it is possible now to use matlab function "ver" to know Monolix

version and Monolix API version
86 - mlxEditor:
87 - allow multiple files selection on open file dialog box
88 - add ’Find and replace ’
89 - set tabs movable
90 - MLXTRAN Model :
91 - Continuous observations can be declared within the model.
92 - Macro for a depot absorption , with a target ODE component.
93 - Permutation kernel for mcmc included
94
95 Other:
96 - Licensing system : ’.ini ’ files desactivated (only the ’.lic ’

files are allowed)
97 - residual error models in main interface are shown now with their

full name (those used in MLXTRAN project and model)
98 --------------
99

100 Monolix 4.2.0 (2012 -11 -26)
101
102 Bugs Fixes:
103 - MLXTRAN Project : in OBSERVATION section when a prediction has the

same name as an individual parameter the project parses fail

33 Monolix 4.2.2

ChangeLog

104 - PerlScript : bug with parameter ’--use -matlab=false ’ was taken as
’true ’

105 - Identity line works in observations vs predictions graphic
106 - Prediction distribution : percentiles are correctly displayed
107 - Color when stratify in covariables graphic
108 - Problem with prior (by default prior is Variance and not Standard

Deviation , this implies a syntax error (standardDeviation <->
variance)

109 - Wrong data file for the demonstration project
rtteWeibullCount_project.mlxtran

110 - "Display the data" button did not work
111 - bug when unchecking and checking "random effects" variability in

simulation interface
112
113 Enhancements:
114 - Interval censoring for continous data
115 - Extended priors on fixed effects
116 - Mlxtran model and Mlxtran project editor
117 - Perl script HMI
118 - Autosave
119 - Multiple covariate definitions
120 - Add batch -mode demo
121 - Add a doc package and a rlm server package (floating license

server)
122 - Graphic
123 - BLQ graphic : possibility to choose his own interval of

censored data
124 - Reorganisation of panel for list of graphics
125 - Background color for each graphic in preferences
126 - When split , limits are the same for all axes
127 - Obs. vs Pred., observations can be relied by individual
128 - Optimal bandwidth setting for parameter distribution
129 - CvSaem graphic : choice of axes number
130 - Interval -censored data and maximum number of events for time -to -

event and drop -out data models
131 - Markov chain for categorical data
132 - Continuous -time Markov process for categorical data
133 - probit and normal cdf for Mlxtran model
134 - New user API including simulation -estimation , convergence

assessment and simulations tools
135 - Possibility to define new covariates as transformation of already

defined ones
136
137 New graphics:
138 - Posterior and prior functions for bayesian
139 - Individual contribution for the LL
140 - Transition probabilities
141 - Kaplan -Meier survival function

34 Monolix 4.2.2

ChangeLog

142
143 New tables:
144 - Individual contribution to log -likelihood
145 - Covariates summary
146 --------------
147
148 Monolix 4.1.4 (2012 -07 -16)
149
150 Bugs Fixes:
151 - Saving preferences from tools menu failed.
152 - Display remaining time (license) correctly.
153 - Problem with license activation file path.
154 - Add license agreement into Linux installer.
155 - The horizontal slider in "Check initial fixed effects" interface

did not appear for some number of individual parameters.
156
157 Enhancements:
158 - Windows 64 RC.
159 - Management of the maximum number of threads for MLXTran models (

can be set from the preference tools: MonolixGUI ->Tools ->
Preference)

160 - License activate: inform user to not set activation key
161 if the license is a floating license.
162 - Documentation :
163 - Installation guide : Windows 64 bits.
164 - User Guide : Cluster section revised.
165 - Model MLxTRAN : list of keywords of the language.
166
167
168 --------------
169
170 Monolix 4.1.3 -sp2 (2012 -05 -29)
171
172 Enhancements:
173 - system.xmlx : possibility to not display Lixoft Activate.
174 - Lixoft Activate : add the possibility to send an email with

encoded computer information to create license @Lixoft.
175 - Lixoft Activate : manage "cannot connect to url" error by asking

user to go on a web site or send an email.
176
177 Bugs Fixes:
178 - IOV Problem with R2010bSP1
179 - perlScripts : bug in the management of the configuration file for

[program -execute -options] and run on a cluster.
180 - add ’rlmutil.exe ’ for windows packages (forgotten in previous

packages).
181 - problem floating license.
182 - warnings for occasions without dose were removed.

35 Monolix 4.2.2

ChangeLog

183 - when the last Individual/Occasion had no dose , Monolix crashed.
184 - When there were syntax errors in the structural model , monolix

said that it could not find the file instead giving the MLXTRAN
message

185 - NaN observations are now mentionned as error when algorithms are
launched.

186 - Update documentation : in batch mode section , there is a bad path.
187 --------------
188
189 Monolix 4.1.3 -sp1 (2012 -05 -21)
190
191 Bug Fixes:
192 - GUI:
193 - Check Initial Fixed Effects interface crashed when creating

covariate and parameter ’s sliders for some sizes
194 --------------
195
196 Monolix 4.1.3 (2012 -05 -02)
197
198 New Features:
199 - MLXTran model: allows negative categories
200 - License management: uses RLM as license provider
201 - Compiler manager: adds the possibility to choose the embedded

compiler
202 - The Monolix and Matlab versions are now stored in the algorithm

result files
203
204 Bug Fixes:
205 - MLXTRAN project:
206 - continuous transformation can take a mathematical expression
207 - problem with structural model path
208 - MLXTRAN model:
209 - Under Linux 64 bits , due to library conflicts with Matlab

R2010b and better , the multi -threaded
210 loading of the model description for the project occasionally

fails
211 - Only the last table variable is recorded , overwriting the

first one
212 - Graphics:
213 - log / linear works on all graphics
214 - when log -log scale is set for "observed versus predicted ’, the

diagonal line isn ’t displayed anymore
215 - GUI:
216 - editor call did not work
217 - Algorithms:
218 - bug for individuals without some type of observations and with

IOV computing conditional mode
219 - bug when there were continuous outputs after discrete outputs

36 Monolix 4.2.2

ChangeLog

220 - Fisher Information Matrix by Stochastic Appoximation does now
handle better the case when there are

221 no parameters to estimate in the residual error
222 - Session:
223 - when the directory monolixData/monolix <version > is renamed

during an active Monolix session , stopping
224 - Monolix caused an exit of Matlab.
225
226 --------------
227
228 Monolix 4.1.2: (2012 -03 -05)
229
230 --------------
231
232 New Features:
233 - PerlScripts : possibility to save the results in the project

directory instead of the output directory
234 - In system.xmlx : automatically creates a directory hierarchy for ’

monolixData ’ path
235
236 Enhancements:
237 - MLXTran (structural model) multi -threading processing enhancement
238
239 Bug Fixes:
240 - Batch Processing failed when a very large number of projects were

launched
241 - MDV column: when MDV=2 only the regression variables were taken

into account
242 - Fixed a bug in graphics saving
243 - Fixed error when an empty result folder was timestamped
244 - Simulation of categorical data , whenever no category 0 is defined
245 - Fixed take into account UserPath defined in ’system.xmlx ’ for the

preference file saving
246
247
248 --------------
249
250 Monolix 4.1.1: (2012 -02 -13)
251
252 --------------
253
254 New Features:
255 - timestamped backup
256 - preferences interface
257 - tools menu for activating license and preferences
258 - option for locking structural model modifications
259 - Project -MLXTRAN grammar modification : initialization of parameter

is written now as beta_{pi,cov}, pop_{pi}, omega_{pi}, ...

37 Monolix 4.2.2

ChangeLog

260 - save graphics as png / ps / jpg / bmp or tiff
261 - selection of graphics/tables to be saved
262
263 Bug Fixes:
264 - Project -MLXTran: user can define the result folder
265 - LoQ difference between 3.2 and 4.1
266 - statistical test for error model and covariate model
267 - xmlx loading from 3.2 to 4.1
268 - correlation (levelName consistence with IOV) + parser error
269 - observation model (prediction = observation name)
270 - path for MONOLIX user profile can include special characters
271
272
273
274 --------------
275
276 Monolix 4.1.0: (2012 -01 -23)
277
278 --------------
279
280 psmlx:
281 - compatible with the mlxtran format of projects
282 - available on Windows OS
283
284 mlxtran:
285 - new syntax
286 - PK macros
287 - RTTE models
288
289 license:
290 - interface for installing the license file
291
292 Interface:
293 - setting for axes ’ limits
294 - information for the observation model
295 - shortcut for model libraries
296
297 File system:
298 - improved handling of special characters for filepaths
299
300 Demos:
301 - updated for the new mlxtran syntax
302 - dispatch of the model library for demos
303
304 Known Bugs:
305 - under Windows OS, user directory cannot contain special characters

other than spaces
306

38 Monolix 4.2.2

ChangeLog

307
308
309 --------------
310
311 Monolix 4.0.1: (2011 -10 -27)
312
313 --------------
314
315 psmlx:
316 - use -matlab option didn ’t work in command line mode
317 - multi -threading : multhreading didn ’t work
318 - take account the p.coded files
319
320 mlxtran
321 - problem with FIM options : both linearization and

stochasticApproximation appeared after a save with
stochasticApproximation option set

322 - avoid the unloading of project when settings files does not exist
: default settings are loaded

323 license:
324 - multi write database didn ’t work well in multi -threading mode
325
326 Interface:
327 - save lists
328 - configuration panel
329 - launching some graphics alone is now possible
330 - the graphics were closed when "Use last estimates" were used
331 - when monolix was launched twice without loading or creating a

project , two toolbars were created
332
333 Algorithm and simulations:
334 - simulation works now with dataset without EVID column and with MDV

column
335
336 Results:
337 - the graphics fit now to the paper in .ps files
338 - xLabels were wrong for some graphics when several regression

variables were present
339 - some graphics crashed when launched after some hypotheses tests

were done
340 - Visual studio redistribuable problem

39 Monolix 4.2.2

Troubleshooting

2.4 Troubleshooting

2.4.1 Downloading Monolix

Problem: My web browser claims that the Monolix download website has insufficient rep-
utation and suggests to stop the download.

Solution: Some browsers like Google Chrome and Internet Explorer may ask whether to keep
or remove the Monolix archive just after download because of the insufficient reputation of
the Monolix download website, simply because it is not referenced, as opposed to the Lixoft
website. Please ignore the warning and choose to keep the file. You can use a MD5 tool to verify
that the downloaded file is not corrupted.

Problem: The Monolix archive is removed just after being downloaded.

Solution: Some antivirus may consider the Monolix archive as risky and put it in quar-
antine or remove it. This is due to the fact that Monolix embeds a compiler for the Mlxtran
language. Two solutions are available:

1. Deactivate your antivirus auto-protection process during download and installation, or

2. Restore the file from the quarantine.

To restore the file from quarantine, please refer to the documentation of your antivirus
software. For the most common examples:

• Norton Antivirus 2012:

– Start Norton Antivirus

– Choose Advanced, then Quarantine

• Avast Antivirus 7:

– Open Avast

– Choose Maintenance, then Virus Chest

You should see the downloaded file among the quarantined files. Execute the Restore action;
the archive will be restored into the directory used for downloading. Click on the archive (ignore
a possible “malware” warning, again related to the fact that Monolix embers a compiler.), and
installation will start.

40 Monolix 4.2.2

Troubleshooting

2.4.2 Running Monolix

Problem: When launching the standalone version, my antivirus tells me that the file
mlxinitializer.exe is risky.

Solution: If your antivirus apparently removed the file mlxinitializer.exe, check if it was
actually put on Quarantine, or removed. If it is in Quarantine, please restore it by following the
same instructions as provided above. If the file was removed you will need to reinstall Monolix
.

You should be able to add this file to your antivirus Trusted Zone or Trusted files.

• Norton Antivirus 2012:

– go to folder Monolix/monolix422s/bin in installation directory: for instance
c:/ProgramData/Monolix/monolix422s/bin

– right click on mlxinitializer.exe, click on Norton Antivirus, then Norton File
Insight then look for ‘Unproven’, and click ‘Trust Now’.

• Avast 7: This software may start Monolix in a SandBox, i.e in a zone where the antivirus
avoids any modification of the system or the files. He will ask you what to do at each run.
Select Run normally.

You can also add mlxinitializer.exe to the exclusions in its Auto-Sandbox settings:
option Additional Protection/AutoSandbox and then click on Settings button.

41 Monolix 4.2.2

Chapter 3

Using Monolix

3.1 Introduction

In order to use Monolix, your problem must be described as a Monolix project. A project
specifies

• the dataset to use

• the structural model

• the statistical model, which includes

– covariate model for individual parameters
– covariance model for random effects
– observation model

• the tasks to run, their settings and initial values

The dataset is an ASCII file containing all the data for your study (see Section 3.3.1 for
a brief description) and the structural model is a function explaining the theoretical model
behind your data. It can be easily described using the Mlxtran language (see the document
modelMLXTRANtutorial.pdf in Monolix documentation folder), or as a Matlab function for
a Matlab version of Monolix.

A mathematical description of the statistical models handled by the software can be found
in Appendix A.

42

Introduction

All these informations can be set in the Monolix main window.

In this chapter, we will describe the main window and its different sections, using a simple
example.

3.1.1 The theophylline example

We will consider the theophylline data (see [6, 21]) as an example to illustrate how to use
Monolix.

In this case subject i receives a dose Di per kilo at time 0 and serum concentrations (yij)
are measured at times (tij). Serum concentration is modeled by a first-order one compartment
model. Then,

yij =
Di kai

Vikai − Cli

(
e
−Cli
Vi

tij − e−kai tij
)

+ aεij (3.1)

where kai is the absorption rate constants of subject i, Vi is the volume per kilo of subject i and
Cli is the clearance per kilo of subject i. These three parameters are nonnegative real numbers
and are assumed to be log-normally distributed. Here,

• the vector of regression (or design) variables is xij = (Di, tij).

• the vector of individual parameters is ψi = (kai, Vi, Cli),

• the model is assumed to be homoscedastic and g ≡ a.

The only available covariate is the weight (wi) of the subjects.

The data file theophylline_data.txt is in the directory <demos folder>/theophylline.
This file is in the so-called “NONMEM format” and contains the ID numbers of the subjects,
the doses per kilo (Di/wi), the times (tij), the observed concentrations (yij), the weights (wi)
and the genders (si) (this additional covariate is not in the original dataset: it was added for the
demo).

ID AMT T DV WEIGHT SEX
1 4.02 0 . 79.6 M
1 . 0.25 2.84 79.6 M
1 . 0.57 6.57 79.6 M
...

...
...

...
...

2 4.4 0 . 72.4 M
2 . 0.27 1.72 72.4 M
...

...
...

...
...

12 5.3 24.15 1.17 60.5 F

43 Monolix 4.2.2

The main window

Here, “AMT” (amount per kilo) holds for “D/w”, “T” is the time and “DV” (dependant variable)
holds for “y”.

3.2 The main window

After starting Monolix, the main window appears empty. Only the “Project” and “?”
(help) menus are available, there you need to choose or create a project to continue.

The project can be created from scratch by clicking on
Project->New in menu or modifying a previously loaded one
(Project->Load).

It is then possible to save it with the menu Project->Save
in any of three formats: as a Mlxtran project (ASCII file
with extension .mlxtran, recommended and default for new
projects), as a binary Matlab (.mat) file or as a XML (.xmlx)
file.

Once the project is chosen, the different sections of the interface become visible. Those
sections facilitate the project definition.

All the menu options also appear and the toolbar buttons become enabled.

• create a new project

• load an existing project

• save the current project (mlxtran, mat, and/or XML file)

• see the last results for the current project

• display the data

• estimate the population parameters,

• estimate the Fisher information Matrix and the standard errors,

• estimate the individual parameters,

44 Monolix 4.2.2

The “Data and Model” frame

• estimate the log-likelihood,

• display a set of graphics

• test the covariate model

• test the covariance model

• test the residual error model

• simulate a new dataset

• publish the results (not available with the standalone version)

• about Monolix

• quit Monolix

In our example, the project file theophylline_project.mlxtran is included in the Demos
so you can load it or create a new one from scratch.

- To load the project, use the button and select theophylline_project
in the <demos folder>/theophylline folder (go to Section 3.7 to see how to run the
algorithms).

- To create a new project to analyze the theophylline data, use the button
and follow the instructions below.

3.3 The “Data and Model” frame

3.3.1 The data

The data file should contain a matrix in an ASCII format with or without header for each
column. The columns of this matrix contain (in any order)

1. the ID of the subjects (can be any string or number, not necessarily ordered),

2. the regression variables (xij),

3. the observations (yij),

45 Monolix 4.2.2

The “Data and Model” frame

4. the covariates,

5. additional information (censoring, rate, tau . . .).

. theophylline example:

To select the theophylline dataset use the button The data . A new window is opened

• Select the data file theophylline_data.txt. The dialog box to select the dataset can be
opened with the button Data file .

• If Monolix does not recognize the different columns you can choose one of the column
delimiters from comma (“,”), semicolon (“;”) , space (“ ”), tab (“\t”):

• Since the file has a header in the first line (ID AMT T DV WEIGHT SEX), Monolix will
use the recognized columns by default. You can choose other headers for each column by
yourself. Use Use header button whenever it is desired that Monolix uses the header
from the file, instead of the current one.

• Check that Monolix has recognized the keywords (ID, AMT, T, DV) and translated them
to (ID, AMT, TIME, Y).

• The headers WEIGHT and SEX are not recognized and set to IGNORE. Nevertheless, you can
consider the weight as a continuous covariate by selecting the label COV for this column
and the gender as a categorical covariate by selecting the label CAT for this column.

• Accept the data information with the Accept button

46 Monolix 4.2.2

The “Data and Model” frame

A list of the main headers identified by Monolix is

• ID (or #ID, I) to identify subjects

• TIME (or T) for the time

• AMT (or DOSE, D) for the dose

• X (or REG, XX) for any regression variable

• Y (or DV, CONC) for the observations

• YTYPE (or ITYPE, TYPE, DVID) for the type of observations
when there are several types of observations (1 for the first
type, 2 for the second type, . . .). YTYPE is not necessary in
the case of a single output.

• COV for the continuous covariates

• CAT for the categorical covariates

• OCCASION (or OCC) for the occasion

• ADM for the type of administration

• CENS for censored data. Can be −1 to represent right-censored
data

• LIMIT for interval-censored data. It gives the lower limit while
Y gives the upper limit

• RATE (or R) for the infusion rate

• TINF for the infusion duration

• SS for steady-state (requires column II)

• ADDL for the number of additional doses (requires column II)

• II (or TAU) for the inter-dose interval

• MDV (Missing Dependent Variable) MDV= 0 if the row contains
an observation and MDV=1 otherwise. MDV is not necessary if
a dot is used to say when a row does not contain any mea-
surement (Y=‘·’). You can use MDV=2 to include times for re-
gression variables updates and for prediction evaluation (see
Section 4.11).

47 Monolix 4.2.2

The “Data and Model” frame
• EVID for Dose events. EVID is not necessary if DOSE=‘·’ is used

when a row does not contain any dose information. EVID=4
resets the system to the initial state.

3.3.2 The model function

Use The model button to define the
model function. In the Model List win-
dow, it is possible to select a model from
the model library included in the soft-
ware (PK library, PD library, VK li-
brary, discrete data library) by using the
Monolix Library button; or from a per-
sonal list by using the Other list button.

Refer to modelMLXTRANtutorial.pdf for more details of how to implement your own model
using Mlxtran.

When a model is selected from one of these lists, the model information is summed up in
the Model Info window: name of the function, number and names of the parameters, of design
variables and of outputs.

Edit the model with the Edit button. If you use the Matlab
version of Monolix, then the Matlab editor will be used by default.
If you use the standalone version of Monolix (or if you want to use
another editor with the Matlab version), select your own editor with
the · · · button. In standalone version, only the Mlxtran models can
be edited, and the only .m models that can be used are the built-in
models.

Note: Monolix includes now its own editor for Mlxtran projects and models. Set the
editor to ‘mlxEditor’ if you want to use it.

. theophylline example:

We use the first order oral absorption with one compartment model function
(oral1_1cpt_kaVCl) from the PK library which has 1 design variable (time), 3 param-
eters (ka, V , Cl) and 1 output (concentration).

Important: When a project is created (or loaded), there are two ways to change the structural

48 Monolix 4.2.2

The “Data and Model” frame

model:

• by clicking on the button The structural model .

• by right-clicking on the name of the model.

3.3.3 The covariate model

Here, m is the number of covariates and d is the number of individual parameters. Then,
The covariate model is a m × d matrix A containing only 0 and 1. For any 1 ≤ k ≤ m and
any 1 ≤ ` ≤ d, Ak,` = 1 if the `-component φi,` of the individual parameter φi is function of the
kth covariate, and 0 otherwise.

. theophylline example:

Let us assume that no covariates are used in the model:

log(kai) = µ1 + ηka,i

log(Vi) = µ2 + ηV,i,

log(Cli) = µ3 + ηCl,i

Consider now that the log-volume is a linear function of the weight and that the log-clearance
depends on the gender.

log(kai) = µ1 + ηka,i

log(Vi) = µ2 + βW,V wi + ηV,i,

log(Cli) = µ3 + βS,Cl1si=M + ηCl,i,

Here, the reference group are the female and the population parameters are

log(Clpop,F) = µ3

log(Clpop,M) = µ3 + βS,Cl.

3.3.4 Creating and transforming covariates

Some times, it is needed to use some transformed version of the original covariates. It can
be done in the window opened when clicking on the button transform :

49 Monolix 4.2.2

The “Data and Model” frame

1.- transforming continuous covariates

It is possible to consider non-linear functions of the continuous covariates. Logarithmic, ex-
ponential or fractional polynomials are available and personal functions can be considered. This
is also possible to center the covariates.

. theophylline example:

Consider for example, a log-transformation of the weight, centered by the mean:

w?i = log(wi)− log(w)

Then, the covariate model used for the volume is

Vi = V
(wi
w

)βW,V
eηV,i

Instead of using the mean to center the log-
transformation of weights, you can normalize the
weight by some constant value a (a = 70 for example)
by centering the transformed weight by log(70):

Vi = V
(wi

70

)βW,V
eηV,i

50 Monolix 4.2.2

The “Data and Model” frame

Remark: The pre-defined transformations will
be removed in a future version of Monolix. We
strongly recommend to write your own transforma-
tion using the “other” option. For example, the allo-
metric transformation of the weight proposed above
just reduces to:

2.- transforming categorical covariates

You can easily modify the groups defined by a
categorical covariate. You can also select the refer-
ence group and modify the names of the groups (just
click on Gk to change the name of the k-th group).

3.- creating new covariates

In some cases, it is needed to use different transforms of the same covariate, for instance
to use WEIGHT for some parameter and log(WEIGHT) for other. It is possible by creating a new
dependent covariates.

To create new covariates, click on Add button
and select from which covariate, among the originals
and already created ones, the new one will depend.
Then click on OK .

The new covariate is added to the list at the left so you can use them like the original ones
and define their transformations.

The new or transformed covariates receive a
name by default that can be modified by the user
at the top of the window.

51 Monolix 4.2.2

The “Data and Model” frame

It is also possible to remove the new covariates or the transformations from the original
covariates with the button Remove .

It is important to note that, the new covariates will be of the same type (continuous or
categorical) than those from which they are function of, and that new categorical covariates can
only be function of original (not transformed) categorical covariates.

Note: It is recommended to set the name of the modified or newly created covariates before
creating new ones.

3.3.5 Distribution of the individual parameters

The default distribution of the individual parameters are defined by the structural model, but
it is possible to change it in the Monolix window by clicking on the buttons below Distribution
of the individual parameters to

• N for a normal distribution ψ = ϕ

• L for a log-normal distribution
ψ = eϕ

• G for a logit-normal distribution
ψ = (1 + e−ϕ)−1

• P for a probit-normal distribution
ψ = P(N (0, 1) ≤ ϕ)

• B for a power-normal (Box&Cox) distribution
ψ = (Aϕ+ 1)

1
A

• C for a custom (user defined) distribution

3.3.6 The covariance model of the random effects

The covariance model of the random effect is a d×d matrix ∆ formed by 0 and 1. For
any 1 ≤ j ≤ d and any 1 ≤ l ≤ d, δjl = 1 if there is a correlation between ηij and ηil, and δjl = 0
elsewhere. δjj = 0 means that the variance of the jth random effect is 0.

52 Monolix 4.2.2

The “Data and Model” frame

A diagonal covariance matrix is obtained by setting the matrix ∆ to

Assume now that the absorption rate does not vary between subjects
and that clearance and volume are correlated. Then, ∆ should be set to

Note: The covariance matrix, must be symmetric and block defined. For this reason, if the
matrix is not valid the algorithms can not be launched. Also, starting from Monolix 4.2.2, the
project file can not be saved when the covariance matrix is not valid.

You can also assume different variances in the groups defined by a categorical covariate (click
on the button Cat.var.).

Assume for example that the variance of the volume depends
on the gender

Remark: In the different groups, the random effects have dif-
ferent variances but the same correlations. In this example, the
correlation between Volume and Clearance is the same for male and
female.

3.3.7 The observations model

The observations model can be defined in the structural model function (for discrete data:
count, categorical, RTTE, etc) or it can be a residual error model (for continuous data).

The observation model section shows, for each observation, the vari-
ables name and their type following the structural model definition. If
the observation name is not set in the structural model (for continuous
observations, it can be given the prediction name instead, see Mlxtran
models description) then it can be defined by the user using the interface.

For the continuous observations, we consider the general form y = f + g e where e is a
sequence of independent random variables normally distributed with mean 0 and variance 1.

Some extensions assume that there is a transformation t such that t(y) = t(f) + g e. It is
also possible to assume that the residual errors are correlated. Here are some examples of error
models:

53 Monolix 4.2.2

The “Initialization” frame

const: constant error model y = f + a e
prop: proportional error model y = f + b f e
comb1: combined error model y = f + (a+ b f)e
comb2: combined error model y = f + a e1 + b f e2

propc: proportional error model + power y = f + b f c e
comb1c: combined error model + power y = f + (a+ b f c)e
comb2c: combined error model + power y = f + a e1 + b f c e2

exp: exponential error model t(y) = log(y) and y = f ea e

logit: logit error model t(y) = log(y/(1− y))
band(A,B): extended logit error model t(y) = log((y −A)/(B − y))

Select the checkbox r if you want to consider autocorrelation on the residual errors.

You can also constrain the second parameter b in comb1 and comb1c
error models to be positive by checking b>0

3.4 The “Initialization” frame

Initial values are specified for the Fixed effects, for the Variances of the random effects
and for the Residual error parameters. It is usually recommended to run SAEM with different
initializations and to compare the results (see convergence assessment tool in Section 3.7.7).

A right click on an initial value displays a list with three options.
The default choice is Estimate for maximum likelihood estimation.
The choice of the “Fixed” option (initial values in pink), means that
this parameter must be kept to its initial value and so, it will not be
estimated. Use the Priors option (initial values in blue) to specify
a prior distribution for this parameter.

Only the two options Estimate and Fixed are available for the variances and residual error
model parameters

You can also switch between to estimate standard deviations or
variances

54 Monolix 4.2.2

The “Algorithm” frame

3.4.1 Check initial fixed effects

The fits obtained with the initial fixed effects are displayed for continuous observations. It
can be useful in case of complex models (e.g. defined with differential equations), in order to
find some “good” initial values. You can change the values of the parameters with the buttons
+ and - and see how the fits change.

3.4.2 Use the last estimates

If you have already estimated the population parameters for this project, then you can use
the Use the last estimates button to use the previous estimates as initial values.

3.5 The “Algorithm” frame

There are several settings that control the behavior of the algorithms and the results graphics
and tables generation (see Section 3.13). The main interface gives access directly to some of them:

• Seed: The default value of the seed used for the random numbers generator is 123456.
This seed can be randomly generated with the New seed button.

55 Monolix 4.2.2

The “Results” frame

• Number of iterations: There are two stages in the population parameters estimation
algorithm. Use K1 and K2 to define the number of iterations for each one.

If auto is selected, then algorithm will determine automat-
ically if it can jump from one stage to the other or if it can
finish the estimation process. In this case, the numbers K1 and
K2 will represent the maximum number of iterations for each
stage. Here, these numbers will not exceed 500 and 200.

• Number of chains: When the dataset is small, just a few of subjects for instance, repli-
cating the dataset can improve the precision of the estimation. The number of (Markov)
chains specifies how many times the dataset need to be replicated.

You can specify this number yourself,

or you can let Monolix to compute how many replicates
are needed to ensure a minimum number of subjects. In this
case, you should specify this minimum size and any time you
change the dataset, the number of chains will be updated ac-
cording to the number of subjects present in the new dataset.

For instance, in the theophylline example there are only 12 subjects in the dataset. Setting
to 50 the minimum number of subjects, Monolix choose to use 5 Markov chains.

• Simulated annealing: A Simulated Annealing version of SAEM is used to estimate the
population parameters (the variances are constrained to decrease or increase slowly during
the first iterations of SAEM, see Section 3.13.1)

• Monte-Carlo Sizes: It can be specified the number of simulated samples used to compute
Prediction distribution graphic, the NPDEs (Normalized Prediction Distribution Errors)
and the VPCs (Visual Predictive Checks), the log-likelihood estimation when the Impor-
tance Sampling algorithm is used (see Section 3.7.4)

• Display: The number of iterations between two updates of the convergence graphics
produced by the algorithm (e.g. SAEM convergence window when estimating population
parameters).

3.6 The “Results” frame

56 Monolix 4.2.2

Executing tasks

• The Results folder is the folder where all the results are stored.

– Project name: the result folder is determined automatically from the name of the
project as “<project folder>/<project name>/”.

– User defined name: the name and the directory of the results folder are defined by
the user.

• Standard errors: Which algorithm to use when computing Fisher Information Matrix and
standard errors. Can be by Linearization (using a linear approximation of the model)
or by Stochastic Approximation (the observed Fisher Information Matrix of the exact
model is estimated by stochastic approximation).

• Individual parameters: says if the Conditional modes and/or Conditional means and
standard deviations should be computed when estimating the individual parameters

• Log-likelihood: says which algorithms to use when estimating the log-likelihood. Can
be by Linearization (using a linear approximation of the model) and/or by Importance
Sampling (the log-likelihood of the exact model is estimated by Monte-Carlo).

• Graphics: Use List button to choose the list of graphics to produce when the results are
computed.

3.7 Executing tasks

57 Monolix 4.2.2

Executing tasks

Monolix includes several estimation algorithms: estimation of the population parameters,
the Fisher information matrix and standard errors, the individual parameters, and log-likelihood.
Also, different types of results are available in the form of graphics and tables.

For illustration, we will consider a project with the theophylline data as represented in the
Figure above. Here, the log-weight centered by the mean is used as a continuous covariate and
the gender as categorical.

3.7.1 Estimation of the population parameters

Maximum likelihood estimation of the population parameters is performed with the but-
ton.

The sequence of estimated parameters (θk) is displayed in a figure which is automatically
saved as saem.png in the results folder at the end of the estimation. Also, the final estimations
are displayed in the Matlab command window.

This algorithm produces the file pop_parameters.txt in the result folder, with all the esti-
mated parameters: population parameters, variances (or standard deviations), correlations, error
model parameters, etc. It also includes the project filename, the date and hour of the run, and
the version of Monolix . The estimation of the population parameters by groups defined by
the categorical covariates used in the model are also given.

The same information is printed in the screen (Matlab command window for Matlab
version and DOS or linux terminal for standalone version). The algorithm convergence graph
(saem.png), as well as a copy of the used project in .mat and .xmlx formats are also saved. Also,
if the structural model is coded using Mlxtran, a copy of this file is included.

. theophylline example:

The final estimations for our example, and the convergence graphics for this exemple are:

We clearly see on these graphics that the trajectory of (θk) is much more random during the
first stage than during the second stage. The number of iterations used for the SAEM algorithm
were K1 = 173 and K2 = 120.

Remark 1: This figure shows that, despite a very poor initial guess, SAEM algorithm converges
in very few iterations to the neighborhood of the solution. Thus, in this example, a good
estimation of the parameters can be obtained with very few iterations of SAEM (try for instance
with K1 = K2 = 20 and any initial guess...). Also simulated annealing is not necessary for this
project.

58 Monolix 4.2.2

Executing tasks

However it is not always the case. One can see in the figure below that the choice of
the first number K1 of iterations is crucial. In this example, the total number of iterations is
K1 +K2 = 100, with K1 = 50 on the left and K1 = 1 on the right. The second example shows
that K1 = 1 iterations is not enough to reach the neighborhood of the solution. Then, because of
the averaging during the K2 next iterations, SAEM will require many more iterations to converge
than in the first example.

Remark 2: The individual parameters of each subject are “roughly” estimated during the last
iterations of SAEM (by estimating the conditional means E(φi|y; θ̂)). These “rough” estimates
are used for the results if the individual parameters are not better estimated later.

3.7.2 Estimation of the standard errors

Computes Fisher information matrix and so the standard errors of the different estimators
and their correlation. There are two different algorithms: by linearization where the struc-
tural model is linearized, and so the full statistical model is approximated by a gaussian model,
or by Stochastic approximation where the exact model is used, and the Fisher information
matrix (F.I.M) is approximated stochastically (slower but more precise).

59 Monolix 4.2.2

Executing tasks

A "nice convergence" of SAEM A "poor convergence" of SAEM

The final estimations are displayed in the command Matlab window together with the
population parameters:

60 Monolix 4.2.2

Executing tasks

1. the estimated fixed effects, their standard-errors, the absolute and relative p-values obtained
from the Wald test (only for the coefficients of the covariates),

2. the estimated variances (or standard deviations) and their standard-errors,

3. the estimated residual error parameters and their standard-errors,

4. the estimated correlation matrix of the random effects if the covariance matrix is not
diagonal,

5. the correlation matrix of the fixed effect estimates, with the smallest and largest eigenvalues,

6. the correlation matrix of the variance components estimates, with the smallest and largest
eigenvalues,

. theophylline example:

61 Monolix 4.2.2

Executing tasks

All that information is appended to the file pop_parameters.txt.

Remark: The Wald test indicates here that βW,V and βS,Cl are not significantly different
from 0: we can consider that the log-volume is not a linear function of the log-weight, and that
the clearance of the males and females are not significatively different (of course any statistical
inference with only 12 subjects can be dubious. . .).

3.7.3 Estimation of the individual parameters

Although the population parameter estimation algorithm gives a rough estimation of the
individual parameters, it can be estimated two more precise estimators: the conditional mode
and the conditional means. Those estimators can be computed with the button.

If the option Estimate the conditional modes is selected, the individual parameters are
estimated by maximizing the conditional probabilities p(φi|yi; θ̂).

If the option Estimate the cond. means and s.d. is selected, the conditional means and
standard deviations are estimated by MCMC. For each parameter, the mean of these quantities
over all the subjects is displayed together with a rmcmc interval.

Two files indiv_parameters.txt and indiv_eta.txt are created with the estimated indi-
vidual parameters and random effects in table format. Also, if there were defined priors on some
fixed effects, and it was selected prior distribution method for some of them, a new file called
simulatedPopParams.txt is created with simulations using their posterior distribution laws.

. theophylline example:

Here, rmcmc = 5% and
Lmcmc = 50

62 Monolix 4.2.2

Executing tasks

3.7.4 Estimation of the log-likelihood

The estimation of the log-likelihood is performed with the button. Two different al-
gorithms are proposed to estimate the log-likelihood: by linearization and by Importance
sampling.

. theophylline example:

In our example, the two different estimates of the log-likelihood are computed.

The value of the two estimated −2× log-likelihoods, the standard error of the Monte-Carlo
estimate, The AIC and the BIC are displayed in the command Matlab window:

The estimated log-likelihoods are appended to pop_parameters.txt.

Remark: The log-likelihood can not be computed by linearization for discrete outputs
(categorical, count, etc.) nor for mixture models or when the posterior distribution have been
estimated for some parameters with priors.

The Monte-Carlo estimator converges to the observed log-likelihood when the size of the
Monte-Carlo increases. The sequence of estimates, as a function of the Monte-Carlo size, is
displayed as a Figure:

63 Monolix 4.2.2

Executing tasks

3.7.5 Computing results

Use the button to compute produce some graphics and tables.

It is possible to specify the list of graphics (with button List at the bottom of the
main interface), which of them should be saved and which tables should be produced (menu
Graphics->Outputs to save). For more details see Section 3.8.

3.7.6 Running several algorithms

With the button Run , you can executes successively several tasks. The list of tasks to run is
called “scenario” or “workflow”. You can define your own scenario by checking the corresponding
checkboxes at the left of the Run button.

For example, define the following workflow

in order to:

1. estimate the population parameters,

64 Monolix 4.2.2

Executing tasks

2. estimate the standard errors,

3. estimate the individual parameters,

4. display graphical results using the individual parameters estimated previously.

If you just want to compute the population parameters with their standard errors, define
the workflow:

3.7.7 Algorithms convergence assessment

Monolix includes a convergence assessment tool. It is possible to execute a workflow as
defined above but for different, randomly generated, initial values of fixed effects.

Click in the Assessment button on the workflow bar to
open the Assessment graphical interface.

You can enter the number of runs, or replicates, the parameters to generate initial values
and the intervals where those values should be (uniformly) simulated. Click on Run to execute
the tool.

Remarks:

• The project workflow is used (see Section 3.7.6).

65 Monolix 4.2.2

Plots and results

• Population parameters estimation must be selected.

• A result folder is generated for each set of initial parameters.

Two kinds of graphics are given as a summary of the results,

one showing the estimated values (blue)
with the estimated standard errors (red bars) for
each replicate (if the Fisher information matrix
estimation was included in the scenario)

and the superimposed convergence graphics
for each parameter. In case of F.I.M estimation
is included, then the black lines represents the
mean of the estimated s.e.

Also, a .mat file is produced with all the results used for those graphics. Press Last Results
button to reproduce the last result graphics if you already have ran the tool for the current
project, and Cancel to close the interface.

3.8 Plots and results

From the main interface toolbar, you can

66 Monolix 4.2.2

Plots and results

• display the observed data y as a function of the regression variable (e.g. time for a PK
applications): .

• Produce several graphics and tables from the results of the algorithms:

You can select which figures to show in menu Graphics->List or button List in the
interface (see Section 3.8.4) and which figures and/or tables to save (Section 3.8.6)

You can also produce one specific graphic.

Note: By default the new projects do not save the graphics and do not produce the tables.
If you want Monolix to create some table, you must select it in menu Graphics->Output to
save.

Monolix allows to change some visual preferences determining the way the graphics are
shown (set of line colors and styles, markers, etc). It is also possible to specify the format where
the graphics should be saved. Section 4.14 shows how you can set some preferences with an
interface and Appendix B gives an overview of all the parameters that can be set and how.

3.8.1 The graphics

The proposed figures are separated in three groups:

• Reduced: Graphics rapid to create, good to have a first view of the goodness of the fits.

• Simulation: Graphics requiring simulations, so the can take some time to be produced.
Includes some Visual Predictive Checks (VPC) graphics.

• Others: other graphics proposed.

Reduced :

Project Summary: displays some informa-
tion about the project (date, datafile,. . .)

67 Monolix 4.2.2

Plots and results

Spaghetti plot: displays the original data
as a “spaghetti plot”.

Individual fits: displays the individual
fits, using the population parameters with the
individual covariates (red) and the individual pa-
rameters (green) on a continuous grid.

It is also possible to display the median and
a confidence interval for (yij) estimated with a
Monte Carlo procedure. The design and the co-
variates of each subject are used for the simula-
tion.

Obs. vs Pred.: displays observations ver-
sus the predictions (ŷij) computed using the
population parameters (on the left), and with
the individual parameters (on the right)

68 Monolix 4.2.2

Plots and results

Covariates: displays the estimators of the
individual parameters in the gaussian space, and
those for random effects, (e.g. the conditional
expectations E(ϕi`|y; θ̂) and E(ηi`|y; θ̂), 1 ≤ i ≤
N and the conditional modes) v.s. the covari-
ates.

Parameter Distributions: displays the
estimated population distributions of the indi-
vidual parameters. Settings allows you to show a
summary of the theoretical distributions (mean,
median, mode, quartiles, percentiles, standard-
deviation), histograms, and a non-parametric es-
timation of the distribution

It is also possible to display the empirical
distribution of the individual parameters and the
shrinkages computed as follows for each random
effect:

Shrinkage = 1− Var(η̂)

ω̂2

69 Monolix 4.2.2

Plots and results

Random Effects(boxplot): displays the
distribution of the random effects with boxplots.
The horizontal dotted lines show the interquar-
tile interval of a standard Gaussian distribution.

Random Effects(joint dist.): generates
scatter plots for each pairs of random effects.

Convergence SAEM: displays the sequence of
the estimated parameters (θk).

70 Monolix 4.2.2

Plots and results

Simulations :

Residuals: displays the PWRES (popula-
tion weighted residuals), the IWRES (individual
weighted residuals) and the NPDE (Normalized
Prediction Distribution Errors) v.s. x (top) and
v.s. the predictions (bottom).

The PWRES are computed using the
population parameters and the IWRES are
computed using the individual parameters.
For discrete outputs, only NPDE and individual
NPDE are used.

For continuous outputs, this figure shows
the empirical distributions of the weighted
residuals and the NPDE together with the
standard Gaussian pdf and qqplots to check if
the residuals are Gaussian.

Diagnostic VPC: Allows to compare the
empirical distribution of the observations and
theoretical distribution (computed from simula-
tions in observation times) inside some parame-
terizable bins.

71 Monolix 4.2.2

Plots and results

NPC: Allows to compare empirical cumula-
tive distribution function (CDF) of the observa-
tions with theoretical’s (computed from simula-
tions).

BLQ: Shows the proportion of censored data
on time. It is possible to chose the censoring in-
terval. This graphic is only available for projects
with censored data.

Prediction distribution: Allows to com-
pare the observations with the theoretical distri-
bution of the predictions.

72 Monolix 4.2.2

Plots and results

Others :

Categorized data: Allows to check the dis-
tribution of the observations in categories that
can be parameterized by the user.

Time to Event data: Shows empiric (from
observations) and theoretical (from simulations)
survival function and average number of events
for Time to event data. Only available for out-
puts of type event.

73 Monolix 4.2.2

Plots and results

Transition Probabilities: For discrete
observations, shows the proportion of each cate-
gory knowing the previous one. Can be used on
any discrete model.

Posterior Distribution: Shows the pri-
ors (theoretical) and the posterior (simulations)
distributions for each parameter estimated by
“posterior distribution”. Requires the estimation
of the conditional means of the individual pa-
rameters.

Contribution to log-likelihood: Dis-
plays the contribution of each subject observa-
tions to the total log-likelihood. Requires the
estimation of the log-likelihood, and both esti-
mators are shown if they have been computed.

74 Monolix 4.2.2

Plots and results

3.8.2 The tables

Monolix can produce five kinds of ASCII table files:

• Observation times contains the regression variables, the individual predictions, the pop-
ulation predictions, the weighted population residuals, the weighted individual residuals
and the NPDE, for all the observation times in the dataset.

• Fine-grid times contains the regression variables, the individual predictions, the popu-
lation predictions in a fine (regular) grid.

• All times contains the regression variables, the individual predictions, the population
predictions for a possibly larger set of times in the dataset, including observation times,
lines where MDV column is set to 2.

• LL individuals contribution contains subject contribution to the total log-likelihood.

• Covariates summary contains a summary of all the covariates defined in the project.

The first three tables can include new columns according to the table definition in the
structural model as described in Section 4.11.

3.8.3 The graphics menu bar

The graphics menu bar proposes different options

• It is possible to save, close or print the figure and, in Windows, to copy and paste it to any
other document.

• Zoom menu activates or de-activates the zoom

• The Axes menu proposes to use semi-log or log-log scale plots. Settings option gives the
opportunity to choose labels and to change the scale of graphics. It is also possible to use
the same axis limits for the different plots of the same graphic.

• The Stratify menu opens the stratify window, see Section 3.8.5 below.

• The Settings menu opens a new window with the settings of the current graphic.

75 Monolix 4.2.2

Plots and results

3.8.4 Main interface Graphics Menu

This menu options allows to handle the graphics configurations of the project, which are used
each time the results figures and tables are launched. Those configurations have three parts: the
list of result graphics to produce, each graphic settings and the list of graphics to save and tables
to produce.

There are 4 options in Monolix Graphics menu.

• Attach the current settings to
project

• List

• Settings

• Outputs to save

Attach the current settings to project

When this option is chosen, the current settings of the opened figures are used as current
project defaults.

List

This menu allows to manage the list of graphics to display.

Three options are available :

• Load
Allows to load already defined lists. Those lists are divided in two section: Monolix
predefined lists and user defined lists.

76 Monolix 4.2.2

Plots and results

The chosen list determines the figures that will be opened next time the results graphics

are launched (button).

• New
Allows to define and save a list.

This option opens a window that allows to create a list and then either to export to a
.xmlx file or to use in the current project.

Monolix proposes four predefined lists: Reduced, Simulation, Others as explained in
Section 3.8.1, and All. The default list is reduced.

To define the list, it should be selected which graphics to show for each output (checkboxes
at the left, each column represents an output) and how many times (at the right).

It is possible to launch a single graphic by clicking on the corresponding button.

77 Monolix 4.2.2

Plots and results

To export the defined list, use the Save button. The list should be saved in the proposed
folder to be used by Monolix.

In order to use the defined list in the current project, click on the button OK.

Remark : This window is available in Monolix main interface.

• Save
Saves project’s graphic list

78 Monolix 4.2.2

Plots and results

• Remove
Remove an user defined list.

Settings

Allows to handle predefined graphic configurations : load, save and remove.

• Load

Allows to load already defined configurations. Those configurations are divided in two
section: Monolix predefined configurations and user defined configurations.

The opened graphics are automatically updated when a configuration is loaded.

• Save
Allows to save a current configuration. The saved file will be included to the Load list.

Enter a name to save the configuration.

79 Monolix 4.2.2

Plots and results

• Remove
Remove an user defined configuration.

3.8.5 Stratify

The Stratify menu allows to create and use covariates for stratification purposes. It is
possible to select a categorical covariate for splitting, filtering or coloring the dataset. Also, in
the bottom section, it can be defined a time filter

3.8.6 Settings

Each graphic has its own settings, which can be accessed by Settings menu. The most
common types of options are described below.

80 Monolix 4.2.2

Plots and results

Display options

Most of the graphical components can be made visible or hidden, allowing the user to focus
on the desired information.

For some graphics, it is possible to select which plots to show.

Prediction Distribution with two different configurations

Stratify options

Some graphics can be stratified using the filters issued from the Stratify interface mentioned
in Section 3.8.5. It is possible to activate the splits, filters, and/or colors for groups of individuals
and also to filter observations for some time interval (the first regression variable is used if no
time column exists).

81 Monolix 4.2.2

Plots and results

Residuals with 2 kinds of residuals with scatter plots (predictions) and QQ-plot chosen

Predictions Vs Observations without applying stratify

82 Monolix 4.2.2

Plots and results

Split: Predictions Vs Observations with Split option set

Individuals filter: Predictions Vs Observations with Filter (individuals) option set

83 Monolix 4.2.2

Plots and results

Color: Predictions Vs Observations with Color option set

Observations filter: Predictions Vs Observations with Filter (observations) option set

84 Monolix 4.2.2

Plots and results

Saving graphics

It is possible to choose which graphics to save. Clicking on Outputs to save in Graphics
menu, a window is opened :

The save starts after the display of the graphics.

Computations options

The user can modify some parameters required to compute the information to be represented.
This allows him to tune the graphics.

85 Monolix 4.2.2

Plots and results

Figure 3.1: BLQ settings Figure 3.2: Bins settings

Share

Some options are identical for several graphics and can be set
independently from one graphic to the other. The button Share
allows to set the current values to all the graphics sharing those
options. The following table describes links between the different
graphics. The three columns contain respectively the shared op-
tions, the Share button name, and the concerned graphics.

Option Button name Graphics
BLQ Share settings Predictions Vs Observations

Residuals
VPC
NPC

BINS Share settings Residuals
VPC

Categorized data
Estimators Share selection Parameter distribution

Random effects (boxplot)
Joint distribution

86 Monolix 4.2.2

Testing hypotheses

3.9 Testing hypotheses

Three kind of tests can be performed:

• tests the covariate model for the fixed effects,

• tests the covariance model for the random effects,

• tests the residual variance model.

The button allows to define the matrix A0 and A1 that define the covariate model under
hypotheses H0 and H1. Consider as an example that we want to test whether the clearance of
a subject is function of his weight. Thus, assuming that the absorption rate and the volume are
not function of any covariate under both hypotheses, we want to test model H1 against model
H0 defined as follows:

The other parameters used for the model and the algorithm are those defined in the main
Monolix window.

The maximum likelihood estimate and the likelihood are computed under both hypothe-
ses. For both hypotheses, the AIC and BIC criteria are displayed, together with the deviance
(−2× log `(y; θ̂)). The brackets contain the s.e. of these statistics. The Likelihood Ratio Test
(LRT) is performed and the level of significance (p-value) is displayed. Here, the log-likelihood is
estimated using a Monte-Carlo Importance Sampling algorithm. The Monte-Carlo size is defined
as the “LL” size in the Monolix window.

. theophylline example:

87 Monolix 4.2.2

Simulation

Here, AIC, BIC and the LRT agree with the Wald test to conclude that β(WEIGHT,Cl) is not
significant (then, there is no significant effect of the weight on the clearance).

The button allows to define the structure of the covariance matrix Ω0 and Ω1 of the
random effects under hypothesis H0 and H1.

The button allows to define the residual variance models under hypothesis H0 and H1.

A file is generated for each test with the estimations for each hypothesis test and the com-
parison results.

3.10 Simulation

Use the button to open the simulation interface in order to create one or several simulated
datasets.

From this interface you can simulate new datasets.

A set of (ỹij) is simulated using the regression variables (xij) and the covariates of the
original dataset. The simulated data has exactly the same format than in the original data. The
only difference is that the observed (yij) are replaced with the simulated ones (ỹij).

88 Monolix 4.2.2

Publishing the outputs

You are free to set the population parameters yourself or you can use the estimated values,
or the initial values given in the main interface.

By clicking on the button Design data file , you can also change the design (number of
subjects, observation times, covariate values, etc) used for simulations by selecting a new dataset
from this interface. However, the chosen dataset must contain exactly the same covariates that
were used in the main interface (same name and type among categorical or continuous).

It is also possible to simulate several replicates with the same parameters. All the replicates
are stored in the same file and a column REPL (for replicate) is added.

You can specify different sources of variability for simulating this dataset: random effects,
residual error, uncertainty of the estimates (only if the parameters were estimated).

If you want to simulate with censored data, select LOQ. The opened dialog allows to select
the censoring intervals. For each output, you can enter one number to specify the LOQ so the
observations are censored if Y sim ≤ LOQ, or an interval [A,B] to censor if A ≤ Y sim ≤ B.

3.11 Publishing the outputs

Beware: this feature is not available with the stand-alone version of Monolix.

Use the button to generate a report on your project, including figures and results.

Use the edit button to modify the Matlab script which se-
lects the different procedures that will be executed.

You can generate your report as a html, doc, xml or latex file
and all the files will be saved in the results folder.

3.12 The results folder

As explained before, several output files are generated by the different tasks. All of them
are saved in the result folder chosen by the user (see Section 3.7.5). Here we make a summary
of some of those files and when are they generated.

89 Monolix 4.2.2

The results folder

1. With the population parameters estimation (button):

• results.mat is a binary "MAT-file" file that contains all the results

• project.mat and project.xmlx contain the project respectively in .mat and .xmlx. Thus,
this project can be reloaded with the button and running the SAEM algorithm with
the button will reproduce the same results.

• pop_parameters.txt contains the estimated population parameters.

• saem.png is a PNG file where the sequence of estimates (θk) is plotted.

Some of the variables stored in this results.mat are:

fixed_effects : the estimated fixed effects
(for the log-parameters in the case of log-normal distributions)

cov_random : the estimated covariance matrix of the random effects
g_abc : the estimated parameters of the error model

2. With the Fisher information matrix estimation (button) :

• The results of population parameters estimations are completed with the estimated squared
errors (s.e), the relative s.e and the p-value for covariates coefficients as shown in Section
3.7.2 and appended to the file pop_parameters.txt.

3. With the individual parameters estimation (button) :

• A file indiv_parameters.txt which contains the estimated individual parameters is gen-
erated: the conditional modes (m(φi|y; θ̂), 1 ≤ i ≤ N) and/or the conditional expectation

(E
(
φi|y; θ̂

)
, 1 ≤ i ≤ N) with the conditional standard deviations (

√
Var

(
φi|y; θ̂

)
, 1 ≤ i ≤

N) and the covariates.

• A new file indiv_eta.txt that contains the estimated random effects is generated: the con-
ditional modes (m(ηi|y; θ̂), 1 ≤ i ≤ N) and/or the conditional expectation (E

(
ηi|y; θ̂

)
, 1 ≤

i ≤ N) with the conditional standard deviations (

√
Var

(
ηi|y; θ̂

)
, 1 ≤ i ≤ N) and the co-

variates.

• The file simulatedPriors.txt is created whenever it is estimated the posterior distribution
of parameters with priors and the conditional distributions (means and s.d) are estimated.
It contains some samples of those parameters simulated following the posterior distribution

90 Monolix 4.2.2

The results folder

4. With the log-likelihood estimation (button):

• the value of the (-2)log-likelihood together with AIC, BIC are added at the bottom of the
file pop_parameters.txt.

The last three algorithms complete the results.mat file with their own results, adding fields
like

se_fixed : the standard-errors of the estimated fixed effects
pv_fixed : the p-values for the estimated fixed effects

(for the log-parameters in the case of log-normal distributions)
se_random : the standard-errors of the diagonal elements of this estimated covariance matrix
se_g_abc : the standard-errors of the estimated parameters of the error model
logl : the estimated log-likelihood
condmode_param : the individual conditional mode of the parameters arg maxψ P(ψ|y)
condexp_param : the individual conditional expectation of the parameters E(ψ|y)
condsd_param : the individual conditional standard errors of the parameters

5. With the results () button:

Produced ASCII table files if the corresponding tables were selected (see Section 3.8.2):

• predictions.txt contains Observation times table.

• finegrid.txt contains Fine-grid times table.

• fulltimes.txt contains Fine-grid times table.

• individualContributionToLL.txt contains LL individuals contribution table.

• covariatesSummary.txt contains Covariates summary table.

Produced graphic files:

Depending on the chosen figure format (see Section 4.14) you will have

• for Postscript (ps format):

– results.ps includes a selection of graphics: spaghetti-plots, residuals, observation
vs. predictions, etc.

– individual_fits.ps includes the individual fits for all subjects, plotted in several
pages.

91 Monolix 4.2.2

Settings

• Any other format:

– One file for each graphic and several files for individual fits graphic, according to
the number of subjects in the dataset.

5. Other files:

• The hypothesis tests (buttons , ,) generate files with each test results.

• Publish report files

• Simulated files

• One .zip file for each run containing the corresponding results if timestamping has been
activated (see Section 4.14).

Note: The graphics are saved like they are produced, i.e using current graphics settings (see
Section 3.8.4) and window size. You can change the settings and set the figure container size
before re-run the Results. Or you can modify the graphic window itself and save it with the
menu Save As.

3.13 Settings

3.13.1 The population parameters estimation

K0 is the number of burning iterations, K1 and K2 the numbers
of SAEM iterations. If auto is checked, K1 and K2 are automati-
cally adjusted.

The sequence of stepsizes (γk) decreases as 1/kaj , j = 1, 2. If
a1 = 0 and a2 = 1, then γk = 1 during the first K1 iterations and
γk = 1/(k −K1 − 1) during the next K2 iterations.

lK1 , lK2 and rK2 define the stopping rules when auto is checked.
The number of iterations K1 increases with lK1 ; K2 increases with
lK2 and decreases with rK2 .

The default number of Markov chains is L = 1.
m1, m2, m3 and m4 are the numbers of transitions of the four

different kernels used in the MCMC algorithm. The default value
of m2 is 0. Indeed this transition is recommended only in some
specific cases, when the observed kinetics are very different (i.e.
viral kinetics of responders, non responders, rebounders, ...).

92 Monolix 4.2.2

Settings

When Simulated Annealing is checked, the temperature decreases as τk1 and τk2 . Note that
you can use τj > 1 to force the estimated variance(s) to increase from a small initial value to the
estimated value. Then, τk2 > 1 can be used if you want to obtain fits as good as possible and
τk1 > 1 if you want to obtain inter-subject variability as small as possible.

3.13.2 The individual parameters estimation

MCMC is used to estimate the conditional distributions of
the individual parameters when Estimate the cond. means and
s.d. is checked.

m1, m2, m3 and m4 are the numbers of transitions of the four
different kernels used in the MCMC algorithm.

Lmcmc and rmcmc define the stopping rule of the MCMC algo-
rithm. The number of iterations of MCMC increases with Lmcmc
and decreases with rmcmc.

3.13.3 The log-likelihood

A t−distribution is used as proposal. The degrees of freedom
number of this distribution can be either fixed or optimized. In such
a case, the default possible values are 2, 5, 10 and 20 d.f..

A distribution with a small number of d.f. (i.e. heavy tails)
should be avoided in case of stiff ODE’s defined models. We recom-
mend to set d.f. ≥ 5.

3.13.4 The results

You can set the Monte-Carlo sizes used for the VPC and NPDE
(default value is 500) and for Prediction distribution (default is 100).
You can also set the grid size used for graphics and tables using
continuous grids (like individual fits and prediction distribution).

93 Monolix 4.2.2

Settings

3.13.5 Predefined scenarios

Monolix proposes the possibility to create, load and save pre-
defined sets of settings called workflows. Each workflow include the
scenario, the algorithms and results settings. Four of them are pro-
posed but users can define new ones by selecting all the settings for
the current project, and then saving it as workflow.

94 Monolix 4.2.2

Chapter 4

Advanced features

The different features of Monolix 4.2.2 are illustrated with several examples available in
the Demos folder.

4.1 Libraries of models

Several libraries with a large collection of pharmacokinetic and pharmacodynamic models
are included in the Monolix software (in the folder libraries):

• PK library: 1cpt, 2cpt and 3cpts PK models; linear and nonlinear eliminations; single
dose, multiple dose or steady-state designs.

• PKe0 library: PK models (1cpt and 2cpt) with an effect compartment (to be used with
a PD model).

• PD library: immediate response and turnover PD models.

• VK library: some basic viral kinetic models (HIV and HCV).

• Discrete library: some basic models for count data, ordered categorical data, and re-
peated time to event (RTTE) models.

To use one of these models, click on the button structural model, or right-click on the list
of currently selected models to open the Model List window. Select the library with the button
Monolix Library and select one model from the list.

95

Pharmacokinetic and pharmacodynamic data

Of course, you can create your own libraries. If you use the Matlab version of Monolix,
you can write new models with Matlab or Mlxtran. If you use the standalone version, you
should write your models with Mlxtran. See modelMLXTRANtutorial.pdf for more details.

4.2 Pharmacokinetic and pharmacodynamic data

Examples

warfarin: warfarin_PKPD1_project, warfarin_PKPD2a_project,
warfarin_PKPD2b_project, warfarin_PKPD3_project, warfarin_PKPD4_project

It is possible to simultaneously analyze pharmacokinetic and pharmacodynamic data, with
a pharmacokinetic function fPK and a pharmacodynamic function fPD. In this context,

• The observation column of the dataset contains both pharmacokinetic and pharmacody-
namic observations. The YTYPE column indicates the type of each observation (1=PK and
2=PD),

• If you are using .m models of the library, the output of the fPK function is an input of the
function fPD:

1. Choose first the fPK function and choose the corresponding error model gPK .

2. Then use the + button to add the second model fPD and choose the corresponding
error model gPD. It is possible to remove the selected model from the Monolix
window using the - button. A right click on the list, after selecting the name of the
model, allows to change this model,

Examples: warfarin_PKPD1_project, warfarin_PKPD2a_project

• If you write your own model using Mlxtran, you need to define two outputs (one to fit
the data defined with YTYPE=1 and one to fit the data defined with YTYPE=2).

Examples: warfarin_PKPD2b_project, warfarin_PKPD3_project,
warfarin_PKPD4_project

• The individual parameter vector ϕ is the union of the PK and PD parameters,

• Set the initial values for the fixed effects and the variance of random effects as usual, Set
the initial values of the two error models,

• Run the estimation algorithm,

• The button displays the spaghetti plots for both types of observations in two figures.

96 Monolix 4.2.2

Using priors on a fixed effect

• The button displays the chosen result figures and tables (see Section 3.8.4) for each
output.

4.3 Using priors on a fixed effect

When you select to define a prior distribution on a fixed effect, a new window will open
to define its law. As for individual parameters, you can choose from some given distributions
(normal, log-normal, logit-normal and probit-normal) or you can define your own as a transform
T of a gaussian distributed variable:

Assuming θ to be the chosen fixed effect

θ = t(Z)

where Z ∼ N (µZ , σ
2
Z) is a gaussian distributed vari-

able.
You must specify mθ the typical value of θ

(µZ = t−1(mθ)) and the the variance or standard de-
viation of Z. By default, the current initial value will
be used as typical value. Also, selecting a different
typical value will set it automatically as initial value
for the corresponding parameter.

You can also choose between two estimation methods: M.A.P. and posterior distribution.

Note: Monolix can estimate the M.A.P only for

• gaussian priors if θ is a covariate coefficient (β)

• priors with same distribution than the corresponding individual parameter if θ is an inter-
cept. For instance, if V is set as log-normal distributed, then the M.A.P of

θ = intercept of V

can only be computed for log-normal priors on θ.

4.4 Categorical covariate model

Examples

Categorical covariates: PDsim1_project, PDsim2_project, PDsim3_project,
phenorbabital2_project

97 Monolix 4.2.2

Model with censored data

Mixed effects models categorical covariates are described in Section A.2.3.

PDsim1_project, PDsim2_project, PDsim3_project are three pharmacodynamic exam-
ples. PDsim1_data, PDsim2_data, PDsim3_data contain simulated data obtained using an
Emax model.

SEX is used as a categorical covariate: SEX= 0 for males and SEX= 1 for females.

Different models are used C50:

• PDsim1_data and PDsim2_data:

log(C50i) = log(C50pop) + β1SEXi=1 + ηC50,i

PDsim1_data was generated using β = 0 while PDsim2_data was generated generated using
β = 0.4.

• PDsim3_data:
log(C50i) = log(C50pop) + ηC50,i

where V ar(C50i) = (0.1)2 if SEXi = 0 and V ar(C50i) = (0.3)2 if SEXi = 1.

phenobarbital2_project illustrates how to transform a categorical covariate.

Here, the APGAR score is classified
into 3 groups: Low (APGAR <= 3),
Medium (4 <= APGAR <= 7), High
(APGAR >= 8). Just click on the name
of the groups to rename them.

4.5 Model with censored data

4.5.1 Modeling BLQ data

Examples

theophylline: theophylline_cens1_project, theophylline_cens2_project

Mixed effects models with BLQ data are described Section A.5.

98 Monolix 4.2.2

Model with censored data

As an illustration, we will consider a censored version of the theophylline data.

The data files theophylline_cens1_data.txt and theophylline_cens2_data.txt are the
same as the original data file theophylline_data.txt used in the previous section but with
several left-censored observations (yij). The limit of quantification (LOQij) can be the same for
all the patients (see theophylline_cens1_data.txt) or it can vary from one patient to another,
and even from one observation time to another (see theophylline_cens2_data.txt) . In the
data set which includes BLQ data, the censored observations are replaced with the LOQ values
and a new column CENS is added with a binary variable equal to 1 if the observation is censored
and 0 otherwise.

ID DOSE TIME Y WEIGHT CENS
1 4.02 0 . 79.6 0
1 . 0.25 3.00 79.6 1
1 . 0.57 6.57 79.6 0
...

...
...

...
...

...
2 4.4 0 . 72.4 0
2 . 0.27 2.5 72.4 1
2 . 0.52 7.91 72.4 0
...

...
...

...
...

...
12 5.3 24.15 3.00 60.5 1

In the Data Information window, this new column is referenced with the CENS header.

Then, Monolix can be used as usual. The button displays the same figures as the usual
MCMC-SAEM with points associated to a censored observation displayed differently.

4.5.2 Modeling interval censored data

Examples

censored_data: censored_project

In order to handle right-censored data, the column CENS can take −1 as value to tell that
y

(cens)
ij ≥ LOQij where LOQij is the value given in the dataset on the corresponding line of
column Y.

To give both limits of interval censored data, a new column LIMIT is needed to specify the
lower limit while the Y value gives the upper limit. For this, the CENS column must be 1.

99 Monolix 4.2.2

Model with inter-occasion variability

For instance, assume that we have the following dataset

(1) ID TIME AMT Y YTYPE LIMIT CENS
(2) 1 0 50.00
(3) 1 0 . 90 2 . -1
(4) 1 0.5 . 2 1 . 1
(5) 1 1 . 2 1 1 1

...
...

...
...

...
...

...

Line (3) says that the observation of type Y TY PE = 2 at time 0 is right-censored (y(2)
11 ≥ 90),

line (4) says that the first observation of type Y TY PE = 1 is left-censored (y(1)
11 ≤ 2), and line

(5) says that the observation is interval censored (y(1)
12 ∈ (1, 2)) because of the existence of a

numerical value in column Limit

4.6 Model with inter-occasion variability

Examples

IOV: iov1_project, iov2_project, iov3_project, iov4_project

Mixed effects models with IOV are described Section A.6.

Occasions are defined in the datafile, using a column OCC or a column EVID.

Then inter-occasion variabilility (IOV) can be introduced in the model with the IOV but-
ton. The covariate model and the covariance structure of the IOV are defined in a new window.
According to the model described in Section A.6, we consider two kinds of covariates. The co-
variates that do not change with the occasion are displayed in the main Monolix window and
the covariates that change with the occasion are displayed in the IOV window.

Example 1: iov1_project

A cross-over study was simulated. The data set iov1a_data.txt contains the column OCC
and two categorical covariates, TREAT for treatment and SEX. Since the first time for each occasion
is 0, Monolix guesses that there is no “overlapping” between the occasions.

100 Monolix 4.2.2

Model with inter-occasion variability

Here, the treatment (A or B) changes with the occasion. Thus, TREAT is a covariate that will
appear in the IOV window as well as OCC. Furthermore, the sequence of treatments is not the
same for all the subjects (A-B for some patients and B-A for the other ones). Thus, the treatment
sequence (denoted S-TREAT) can be considered as a new covariate (this does not change with the
occasion). Monolix automatically creates this new categorical covariate and displays it in the
main Monolix window.

On the other hand, S-OCC is not created as a new categorical covariate because all the
subjects have the same sequence 1-2 in this example.

SAEM estimates the two covariance matrices and the coefficient of the different covariates:

101 Monolix 4.2.2

Model with inter-occasion variability

Example 2: iov2_project

We use the same simulated data as in the previous example (iov1_data.txt). Here, the
occasions are defined with EVID=4 and the initial times for each occasion are arbitrary.

Example 3: iov3_project

Data with several occasions without wash-out was simulated. Here, the occasions are defined
with the column OCC. Without EVID=4 and with increasing times, Monolix guesses that there
is some “overlapping” between the occasions

Important: Overlapping between occasions can only be handled with a model defined by a sys-
tem of differential equations using Mlxtran. Analytic solution of the PK model (i.e. Matlab
models of the PK library) cannot be used in this situations.

Example 4: iov4_project

There is an additional level of inter-occasion variability. Data was simulated with the fol-
lowing covariance structure:

IIV =

 0 0 0
0 1 0
0 0 1

 , IOV (1) =

 1 0 0
0 0 0
0 0 1

 , IOV (2) =

 1 0 0
0 1 0
0 0 0



102 Monolix 4.2.2

Discrete data models

Running population parameter estimations, you will see that, for each variability level, the
estimated variances are closed to 0 for those parameters that where simulated without variability
at that levels.

Note: When there is OCC column or EVID= 4, it is not possible to use the simulation
interface, nor hypothesis tests on covariance models.

4.7 Discrete data models

Examples

discrete data: categorical1_project, categorical2_project, count1_project,
count2_project, markov1a_project, markov1b_project, markov2_project,
hmm0_project, hmm1_project, rtteExpo_project,
warfarin: warfarin_cat1_project, warfarin_cat2_project

Mixed effects models for discrete data are described in Section A.7.

All the Mlxtran models shown in this section are also stored in the discreteLibrary
folder.

Either Mlxtran or Matlab (if you are using the Matlab version of Monolix) can be
used to create models for discrete data. The output of the model should be the log-likelihood.

4.7.1 ordered categorical data models

In these examples, the outcome can take four possible values: 0, 1, 2, 3.

Example 1: categorical1_project

Its Mlxtran model is categorical1_mlxt.txt:

103 Monolix 4.2.2

Discrete data models
DESCRIPTION: Ordered categorical model

INPUT:
parameter = {th1, th2, th3}
regresor = {PER, DOSE}

OBSERVATION:

level = {
type = categorical
categories = {0, 1, 2, 3}
logit(P(level<=0)) = th1
logit(P(level<=1)) = th1 + th2
logit(P(level<=2)) = th1 + th2 + th3

}

OUTPUT:
output = level

P (Y = 0) =
1

1 + e−θ1

P (Y ≤ 1) =
1

1 + e−θ1−θ2

P (Y ≤ 2) =
1

1 + e−θ1−θ2−θ3

Example 2: categorical2_project

Its Mlxtran model is categorical2_mlxt.txt:

DESCRIPTION: Ordered categorical model with regression variables

INPUT:
parameter = {th1, th2, th3, th4, th5}
regresor = {PER, DOSE}

OBSERVATION:

level = {
type = categorical
categories = {0, 1, 2, 3}
logit(P(level<=0)) = th1 + th4*PER + th5*DOSE
logit(P(level<=1)) = th1 + th4*PER + th5*DOSE + th2
logit(P(level<=2)) = th1 + th4*PER + th5*DOSE + th2 + th3

}

OUTPUT:
output = level

P (Y = 0) =
1

1 + e−θ1−θ4 PER−θ5DOSE

P (Y ≤ 1) =
1

1 + e−θ1−θ4 PER−θ5DOSE−θ2

P (Y ≤ 2) =
1

1 + e−θ1−θ4 PER−θ5DOSE−θ2−θ3

4.7.2 count data models

In these examples, the outcome can take any positive value: 0, 1, 2, 3,. . . .

The Mlxtran models are, respectively count1_mlxt.txt and count2_mlxt.txt.

Example 1: count1_project

104 Monolix 4.2.2

Discrete data models
DESCRIPTION: Basic Poisson model

INPUT:
parameter = lambda

OBSERVATION:
Y = { type = count,

log(P(Y=k)) = -lambda + k*log(lambda) - factln(k) }

OUTPUT:
output = Y

P (Y = k) =
e−λλk

k!

Example 2: count2_project

DESCRIPTION: Count data model, negative binomial distribution

INPUT:
parameter = {delta, lambda}

OBSERVATION:
Y = {
type = count

h1 = 1/(1+lambda*delta)
llam = log(h1)/delta
lh2 = log(1-h1)

lg1 = gammaln(k+1/delta)
lg2 = gammaln(1/delta)

P (Y = k) =
Γ(k + 1/δ)

k! Γ(1/δ)
(1 + δλ)−

1
δ

(
λ

λ+ 1/δ

)k

if (k > 0)
aux = llam + lg1 - lg2 + k*lh2 - factln(k)

else
aux = llam

end

log(P(Y=k)) = aux
}

OUTPUT:
output = Y

4.7.3 discrete Markov models

For discrete Markov models, you must specify the transition probability matrix and, option-
ally the probability for the initial state.

Here we show two examples of models markov1b_mlxt.txt and markov2_mlxt.txt with 2
and three states respectively.

105 Monolix 4.2.2

Discrete data models

INPUT:
parameter = {p, p11, p21}

OBSERVATION:
State = {

type = categorical
categories = {1,2}
dependence = Markov
P(State_1=1)= p
P(State=1|State_p=1) = p11
P(State=1|State_p=2) = p21

}

OUTPUT:
output=State

INPUT:
parameter = {a11, a12, a21, a22, a31, a32}

OBSERVATION:
State = {

type = categorical
categories = {1,2,3}
dependence = Markov
logit(P(State<=1|State_p=1)) = a11
logit(P(State<=2|State_p=1)) = a11+a12
logit(P(State<=1|State_p=2)) = a21
logit(P(State<=2|State_p=2)) = a21+a22
logit(P(State<=1|State_p=3)) = a31
logit(P(State<=2|State_p=3)) = a31+a32

}

OUTPUT:
output=State

4.7.4 hidden Markov models

• For i = 1, 2, . . . , N , let zi = (zij , j ≥ 1) be a Markov Chain with memory 1 that takes its
values in {1, 2, . . .M}:

P (zij = m|zi,j−1, zi,j−2, . . . zi,1) = P (zij = m|zi,j−1)

• Let p`mi = P (zij = m|zi,j−1 = `) and Πi = (p`mi) be the transition matrix of the Markov
Chain zi.

• Assume that (yij) takes discrete values in {0, 1, 2, . . .} and that

P (yij = k|zi1, zi2, . . .) = Pψi (yij = k|zij)

Objective: Estimate the population distributions of the transition matrices (Πi) and the
individual parameters (ψi).

In the following examples, mixtures of M = 2 Poisson distribution are used. The Matlab
models hmm1_mlx.m and hmm0_mlx.m are stored in the discreteLibrary folder.

Example 1: hmm1_project

The model hmm1_mlx.m assumes a HMM with M = 2 states

106 Monolix 4.2.2

Discrete data models

Here, M = 2,

Π =

(
p11 p12

p21 p22

)
p11 =

1

1 + e−β1
; p12 = 1− p11

p21 =
1

1 + e−β1+β2
; p22 = 1− p21

and 2 Poisson distributions

if z = 1 , y ∼ Poisson(λ1)

if z = 2 , y ∼ Poisson(λ2)

Example 2: hmm0_project

Here, we use the same conditional distributions for (yij) but the (zij) are sequences of
independent random variables (Markov chain with memory 0).

p1 =
1

1 + e−β
; p2 = 1− p1

4.7.5 repeated time to event models (RTTE)

Examples: rtteExpo_project, rtteWeibull_project

Repeated events are observed at random times between day 0 and day 365 for 500 patients.
The first event which occurs after day 365 is not observed: the time of this event is censored.
We consider here a very simple model with a constant hazard function

h(t) = Hbase

In the data file rtte_data.txt, we use EVENT=1,2,... for the observed events and EVENT=0
for the censored event:

ID TIME Y
1 0 0
1 153 1
1 262 2
1 365 0
2 0 0
2 34 1
2 109 2
2 365 0

107 Monolix 4.2.2

Discrete data models

The Mlxtran model is then

DESCRIPTION: RTTE with constant hazard function

INPUT:
parameter = Te

OBSERVATION:
Event = {type=event, hazard=1/Te}

OUTPUT:
output = Event

Other hazard functions can be defined as shown in rtteWeibull_project demo.

Note: It is not possible to use the simulation interface for RTTE data.

4.7.6 joint modelling of continuous and discrete outputs

To illustrate the ability of Monolix to model jointly continuous and discrete outputs, we
use the warfarin data assuming here that the PD of warfarin is an ordered categorical data with
3 possible scores: 1 if PCA < 30, 2 if 30 ≥ PCA ≤ 50 , 3 if PCA > 50. This new data is stored
in warfarin_cat_data.txt.

The Mlxtran models oral1_categorical_mlxt.txt and oral1_ke0_categorical_mlxt.txt
are stored in the libraryMLXTRAN folder next to the project file. Both models assume that the
probability of a high (resp. low) PCA decreases (resp. increases) with the concentration.

Example 1: warfarin_cat1_project

An immediate response model is used in this example:

DESCRIPTION: First order oral absorption with a lag-time, and ordered categorical data

INPUT:
parameter = {Tlag, ka, V, Cl, th1, th2, th3}

PK:
Cc= pkmodel(Tlag,ka,V,Cl)

OBSERVATION:
Level = {
type=categorical
categories={1,2,3}
logit(P(Level<=1)) = -th1 + th2*Cc
logit(P(Level<=2)) = -th1 + th2*Cc + th3

108 Monolix 4.2.2

Complex residual error models

}

OUTPUT:
output = {Cc, Level}

Example 2: warfarin_cat2_project

We use the same model as previously with an additional effect compartment

DESCRIPTION: First order oral absorption with a lag-time, effect compartment,
and ordered categorical data

INPUT:
parameter = {Tlag, ka, V, Cl, ke0, th1, th2, th3}

EQUATION:
{Cc,Ce}= pkmodel(Tlag,ka,V,Cl,ke0)

OBSERVATION:
Level = {
type=categorical
categories={1,2,3}
logit(P(Level<=1)) = -th1 + th2*Ce
logit(P(Level<=2)) = -th1 + th2*Ce + th3
}

OUTPUT:
output = {Cc, Level}

Demos pkrtteExpo_project and pkrtteWeibull_project are two examples where PK data
is modeled at the same time than RTTE data.

4.8 Complex residual error models

Examples

error model: PKcorr1_project, PKcorr2_project, Emax_errorband_project

Residual error models are described in Section A.3 and their use with Monolix is described
in Section 3.3.7.

109 Monolix 4.2.2

Complex residual error models

4.8.1 autocorrelated residual errors

Assuming autocorrelated residual errors is extremely easy
with Monolix. Choose your error model as usual and just
select the autocorrelation option with the checkbox:

PKcorr1_project and PKcorr2_project are two PK examples where an exponential residual
error model with autocorrelated errors (εij) is assumed:

log(yij) = log(f(tij ;ψi)) + εij

• Equally spaced sampling times are used in PKcorr1_data: ti,j+1 − tij = 1. Then,

corr(εij , εij′) = ρ|j
′−j|

• Irregular sampling times are used in PKcorr2_data. Then,

corr(εij , εij′) = ρ|tij′−tij |

Data was simulated using ρ = 0.5 for both examples.

4.8.2 residual errors for bounded data

Example: Emax_errorband_project

We assume in this example that the data takes continuous values in (0, 100). Then, we
consider the following residual error model:

log

(
yij

100− yij

)
= log

(
f(tij ;ψi)

100− f(tij ;ψi)

)
+ εij

The error model band(0,100) is predefined in Monolix and can be selected:

110 Monolix 4.2.2

Complex PK models

4.9 Complex PK models

Examples

PK models: admin1_project, admin2_project, infusion_2cpt_project,
ss1_project, admin2_project, oral0_1cpt_MD_project, oral0_2cpt_SS_project,
bolus_1cptMM_project, phenobarbital_project

4.9.1 Complex administrations

Example 1: admin1_project

The data file admin1_data.txt contains real PK data. This example is a combination of
oral and IV bolus administrations. Then the model takes into account the bioavailability.

The Mlxtran model admin1_mlxt.txt is stored in the folder libraryMLXTRAN.

DESCRIPTION: Combination of oral and IV bolus administrations.

INPUT:
parameter = {F, ka, V, CL}

;;
; Version 1 using PK macros

PK:
compartment(amount=Ac)
absorption(adm=1, ka, p=F)
iv(adm=2)
elimination(k=CL/V)
Cc=Ac/V

;;
; Version 2 using PK macros and ODEs

;PK:
;compartment(cmt=1, amount=Ad)
;compartment(cmt=2, amount=Ac)
;iv(adm=1, cmt=1, p=F)
;iv(adm=2, cmt=2)

;EQUATION:
;k=CL/V
;ddt_Ad = -ka*Ad
;ddt_Ac = ka*Ad - k*Ac
;Cc=Ac/V

;;

OUTPUT:
output = Cc

111 Monolix 4.2.2

Mixture models and model mixtures

Example 2: admin2_project

The data file admin2_data.txt contains real PK data. This example is a combination of 3
oral and 1 infusion administrations. Then the model takes into account the 3 bioavailabilities.

The Mlxtran model is admin2_mlxt.txt.

4.9.2 Steady-state

Example: ss1_project

The data file ss1_data.txt contains real PK data. This example is a combination of single
dose and steady-state.

Mlxtran models do not handle steady state administrations, and PK library models only
handles this kind of doses, when all the subjects have exactly one steady doses. That is why,
Monolix adds some doses artificially as an approximation of the steady state, converting the
doses to the multiple doses case, but ensuring that no doses are added before a previous dose,
event or observation of each subject. You can define the maximum number of doses that should
be added in the preferences file (see Appendix B).

Note: Steady-state doses are treated like if there were a new occasion with EVID= 4. That
means that it is possible to add inter-occasion variability and that it will not be possible to use
the simulation interface nor the hypothesis test on covariance model.

4.10 Mixture models and model mixtures

Examples

mixtures: PKmixture_project, bsmm_project, wsmm_project

Mixture models and mixture of models are described in Section A.8.

112 Monolix 4.2.2

Mixture models and model mixtures

4.10.1 Mixture models

Click on the mixture button to create
latent covariates and define the number of
categories for each latent covariate.

Then consider these latent covariates
that you have created as a categorical co-
variate and define your covariate model as
usual.

See PKmixt_project as an illustrative example: PK data were simulated using a one com-
partment model and assuming two categories for the volume (β = 0.5). In this simulated
example, the column GROUP contains the labels (i.e. the groups), but the column GROUP is set
to IGNORE. Project PKgroup_project uses the same data file and the same model, but using the
known categorical covariate (setting GROUP to CAT). Then, a comparison of the results provided
with these two projects can be used to validate the proposed methodology for mixtures.

Similar exercises can easily be done with the examples provided for categorical covariates in
Section 4.4.

4.10.2 Model mixtures

Between subjects model mixtures (BSMM) and within subjects model mixture (WSMM)
must be defined in the Mlxtran file using the reserved key-words BSMM or WSMM (see the examples
below).

On the other hand, the statistical models (defined with the Graphical User Interface) are
slightly different:

• BSMM assumes no inter-individual variabilities for the proportions of each group (ı.e. the
probabilities to belong to the different groups)

• WSMM assumes inter-individual variabilities for the proportions of each model.

113 Monolix 4.2.2

Tables

bsmm_project is an example of BSMM.
Probabilities p and 1 − p are associated to

models f1 and f2. Here, p is an unknown pop-
ulation parameter (i.e. with no inter-individual
variability).

The Mlxtran file bsmm_mlxt.txt uses the
reserved key-word BSMM.

DESCRIPTION: Between subject model mixture

INPUT:
parameter = {a, b, c, p}

EQUATION:
f1 = a
f2 = b*exp(-c*t)
f=bsmm(f1, p, f2, 1-p)

OUTPUT:
output = f

wsmm_project is an example of WSMM.
Proportions p and 1 − p are associated to

models f1 and f2. Here, p is an individual
parameter logit-normally distributed with some
inter-individual variability (to be estimated).

The Mlxtran file wsmm_mlxt.txt uses the
reserved key-word WSMM.

DESCRIPTION: Within subject model mixture

INPUT:
parameter = {a, b, c, p}

EQUATION:
f1 = a
f2 = b*exp(-c*t)
f=wsmm(f1, p, f2, 1-p)

OUTPUT:
output = f

4.11 Tables

The button can generate some tables (see Section 3.8.2)) containing several informations:
predictions, residuals,. . . .

It is possible to include several additional columns in those tables by appending a table
keyword in section OUTPUT: at the end of the Mlxtran script file as explained in Mlxtran
models documentation.

For each variable set in table, a column will be created with the values of those variables
for each estimator of the individual parameters.

For instance, if you want to include the volume and the clearance used to compute the
predictions, append the line

table={V,Cl}

to the section OUTPUT: of the Mlxtran model.

114 Monolix 4.2.2

Using Monolix in Matlab command line or scripts

4.12 Using Monolix in Matlab command line or scripts

It is provided some Matlab commands in order to access to the functionalities of Monolix
from Matlab command line. It is useful when it is not desired or possible to use the software
interface. It allows also to write some Matlab scripts to, for instance, estimate population
parameters for several projects.

Important: There are two important things to know when using Monolix in command line

• The command line functions should not be used at the same time that the main interface
(in particular methods that generate graphics). It is recommended also to close all the
figures obtained for one project before creating new ones.

• Users under floating licenses must be aware that a token is reserved from first use of
Monolix commands, and it must be freed manually. For that, you can close Matlab or
call

» clear classes;

As explained in Chapter 3, Monolix requires a project and for that we provide the class
MonolixProject.

You can create one from any Monolix project file
» aMonolixProject = MonolixProject(’Path/to/myProject.mlxtran’);

or you can load a new one if the object is already created
» aMonolixProject = MonolixProject(’Path/to/myProject1.mlxtran’);

» ...

» aMonolixProject.load(’Path/to/myProject2.mlxtran’);

Once the project created, the class MonolixProject proposes methods to:

• 1) define a scenario / workflow:

– » aMonolixProject.setSaem(): to include or not population parameters estimation
on the scenario. Computes also a first, rough, estimation of the conditional mean and
conditional variance of the individual parameters.

– » aMonolixProject.setFisher(): to define if Fisher information matrix estimation
(and so standard error of estimates) should be included in the scenario and which
algorithm (linearization or stochastic approximation) must be used.

115 Monolix 4.2.2

Using Monolix in Matlab command line or scripts

– » aMonolixProject.setIndiv(): to include or not individual parameter estimators
and says which estimator to compute among conditional mode and conditional mean
(both can be estimated at the same time). In the second case, it estimates also the
conditional standard deviation and variance.

– » aMonolixProject.setLogLikelihood(): to include or not the log-likelihood esti-
mation and specify the algorithms to use between linearization and importance sam-
pling. Both can be estimated at the same time.

– » aMonolixProject.setGraphics(): to include or not the graphics and tables gen-
eration on the scenario. Allows also to say which graphic to create and/or save and
which tables should be created. You can also choose the graphic format to be used
for saved figures.

• 2) execute a scenario / workflow:

– » aMonolixProject.run(): runs the project scenario as explained in Section 3.7.6.

• 3) execute individual tasks:

– » aMonolixProject.runSaem(): executes only the population parameters estimation

– » aMonolixProject.runFisher(): executes only the Fisher information matrix esti-
mation

– » aMonolixProject.runIndiv(): executes only the individual parameters estimation.

– » aMonolixProject.runLogLikelihood(): executes only the log-likelihood estima-
tion.

– » aMonolixProject.runGraphics(): produce graphics and results tables.

– » aMonolixProject.convergenceAssessment(): executes the convergence assess-
ment tool of the algorithms as described in Section 3.7.7 with default arguments.
It can be specified the number of replicates, the parameters to simulate the initial
values, and the intervals for simulation. It returns the .mat file holding the results.

– » aMonolixProject.simulationEstimation(): executes a project scenario on the
original dataset and on several new datasets simulated using the previously estimated
parameters. It returns a structure with all estimations so the users can make their
own analysis. This tool can not be used with Event observations type, and do not
simulate censored data. It allows to specify the number of replicates, the sources of
variability (estimator uncertainty, individual parameter model, etc), among others. In
order to reproduce the same simulated datasets, you can specify also the seed and/or
random number generator stream (see RandStream help in matlab).

– » aMonolixProject.runSimulation(): allows to simulate a dataset. Several options
are possible in order to choose the variability sources, the design, the population
parameters, etc.

116 Monolix 4.2.2

Using Monolix in Matlab command line or scripts

• 4) control the display:

– » aMonolixProject.toggleFigures();: sets the display configuration when individ-
ual task or complete scenario is ran.
Note: if you are working in a no-desktop environment, you should enter
» aMonolixProject.toggleFigures(’OFF’);

• 5) manage objects:

– » aMonolixProject.load(): see hereabove
– to save the project in a new directory / file enter:

» aMonolixProject.save(’Path/to/myNewProject.mlxtran’);

– to overwrite the original project file:
» aMonolixProject.save();

• 6) miscellaneous:

– » folder=aMonolixProject.getResultsFolder();: returns the folder in which all
the result files are saved (see description in Chapter 3)

– » aMonolixProject.setResultsFolder(’Directory’,newfolder);: to define the
folder where the resul files will be saved.

For further details on the MonolixProject class, or to see the list of available methods, type

» doc MonolixProject

or,
» help MonolixProject

In order to have more information about a given method and its arguments, type

» help MonolixProject/method

Important: The old functions proposed to user to create its own scripts are deprecated and
they will be removed in a future version. In order to adapt their scripts to Monolix evolution,
the function ver should be used to know the Monolix version from Matlab command line:

» v=ver(’monolix’);

» v.Version

For older versions of Monolix, Matlab function ver will return empty ([]).

Is it also possible to know if Matlab version is compatible with the Monolix package that
has been installed. For instance

» if mlxIsMatlabCompatible();error(’Wrong Matlab version’);end

117 Monolix 4.2.2

Full script projects

4.13 Full script projects

As said before, there are several formats to save your projects. Besides the binary .mat
format, Monolix proposes a human readable ASCII file with .mlxtran extension, and an XML-
like format with .xmlx extension.

Saving a project in the Mlxtran format will create two .xmlx files with the advanced algo-
rithm and graphics settings and the .mlxtran file with the description of the project (statistical
model, dataset definition, structural model, etc):

; this script is generated automatically

DESCRIPTION:
warfarin_PK_project.mlxtran

DATA:
path = "%MLXPROJECT%/",
file ="warfarin_data.txt",
headers = {ID,TIME,DOSE,Y,YTYPE,COV,COV,CAT},
columnDelimiter = "\t"

VARIABLES:
age [use=cov],
sex [use=cov, type=cat],
wt,
t_wt = log(wt/70) [use=cov]

INDIVIDUAL:
Cl = {distribution=logNormal, covariate=t_wt, iiv=yes},
V = {distribution=logNormal, covariate=t_wt, iiv=yes},
ka = {distribution=logNormal, iiv=yes},
tlag = {distribution=logNormal, iiv=yes}

STRUCTURAL_MODEL:
file = "oral1_1cpt_TlagkaVCl",
path = "%MLXPATH%/libraries/PKLibrary",
output = {Cc}

OBSERVATIONS:
concentration = {type=continuous, prediction=Cc, error=combined1}
.
.
.

In the case that the two configuration files are missing, a warning will appear when loading
the project and Monolix will use the defaults settings. For description on how to write your
own Mlxtran projects, see ProjectMLXTRAN.pdf.

118 Monolix 4.2.2

Preferences

The XML-like format (.xmlx extension) is composed by only one file containing all the project
information

<monolix>
<project name="warfarin_PK_project.xml">

<covariateDefinitionList>
<covariateDefinition columnName="wt" name="t_wt" transformation="log(cov/70)" type="continuous"/>
<covariateDefinition columnName="age" type="continuous"/>
<covariateDefinition columnName="sex" type="categorical">

<groupList>
<group name="0" reference="true" values="0"/>
<group name="1" values="1"/>

</groupList>
</covariateDefinition>

</covariateDefinitionList>
<settings>

<tasks>
<scenario computeResults="reduced" estimateFisherInformationMatrix="true"
estimateIndividualParameters="true" estimateLogLikelihood="false" estimatePopulationParameters="true"/>

<individualParameterAlgorithms conditionalDistribution="false" conditionalMode="true"/>
<logLikelihoodAlgorithms importantSampling="true" linearization="true"/>
<fisherInformationMatrixAlgorithms linearization="true"/>

</tasks>
<options>

<estimateVariances value="true"/>
<showStandardErrorsInPercents value="true"/>
<resultFolder uri="%MLXPROJECT%/warfarin_PK_project" value="automatic"/>

</options>
.
.
.

</project>
</monolix>

4.14 Preferences

There are several preferences that can be customized by each user. They are stored in
<user directory path>/monolixData/config/preference.xmlx and are loaded at the start
of Monolix. Some of them can be set from a dialog box. It can be opened from the ‘Tools’
menu:

It allows to personalize some user directories:

• log files

• structural model libraries

• module directory (i.e. the directory containing the structural built from Mlxtran script
files)

119 Monolix 4.2.2

Preferences

• working directory : generally the directory containing the projects

and also:

• to limit the number of threads used by
Mlxtran (structural model) - by default this
maximum is the number of logical processors.

• to enable timestamping: backup of the current
state of the project results folder saved in re-
sults directory as a zip file.

• to configure the saved graphics format (png, ps,
jpg, bmp, tiff). Notice the ’ps’ file allows to
create a single file for several graphics, unlike
the other formats which create one file for each
graphic.

• to tell Monolix to use the current folder as the
default folder for all the directory related dialog
boxes.

Several other options are available but they must be modified directly on the file. They are
divided in two categories: graphic and session related preferences. You will find more details
about the content of this file in Appendix B.

For fast reference we mention here some of the session related settings that can not be
modified with that dialog box.

• historic_size: size of the historic list for project files, and structural models.

• editor: text editor used to edit Mlxtran models. It could be set also with · · · button
in ModelList interface (see Section 3.3.2).

• lockModels: set to 1 to hide all the options related to structural model modification:
options Compile and Edit on context menu on the main interface, and buttons New ,
Modify , Edit , Compile on the model selection interface.

• modelFilter: select the default filter for the structural model: use m, mlxtran or none to
filter on .m files, Mlxtran files or to not filter at all.

Others settings allows to define installation preferences and are stored in the file system.xmlx
which is located in config on the Monolix installation folder. This file is shared by all the

120 Monolix 4.2.2

Preferences

users and it may be needed administration rights to modify it.

They include:

• userPath : select the default path of the ’monolixData’ directory. The path is set by
default to ’%USERPROFILE%’ under Windows or ’$HOME’ under Linux. If this setting is
changed, make sure to keep a user-specific path.

• compiler : under Linux OS, it is possible to choose the embedded compiler of Monolix
(this setting is located in the file ’system.xmlx’). Set the argument embed to true, if the
embedded compiler has been chosen.

• compiler.build-linux : under Linux OS, it is possible to configure the compiler options
by using compilation-options tag. It is also possible to force the compiler by using
force-compiler tag (e.g. use icpc, the INTEL compiler). These options have to be used
carefully and may lead some problems.

• display-license-activate : this setting, located in the file ’system.xmlx’ allows to
disable the popup windows ’Lixoft Activate’

Note: Both preference files are read when Monolix is open, so in order to Monolix to
take the changes into account, it must be reopened. If you use Monolix from Matlab com-
mand line, then you should do

» clear classes

121 Monolix 4.2.2

Chapter 5

PerlMLX and the batch mode

5.1 Introduction

PerlMLX is a helper tool that can be used to run

• one or several projects

• an user defined list of project files

defined through Mlxtran or via XMLX project files.

PerlMLX can be executed on Windows and Linux platforms (Matlab and standalone ver-
sion of Monolix are supported) and it can launch multiple runs simultaneously (which can
reduce drastically processing time).

All these features make PerlMLX a very efficient tool for mass processing.

PerlMLX is provided with a simple HMI but some users may prefer the command-line in-
terface (users working on clusters will have to use this command-line interface since clusters are
not managed by the HMI).
Note: PerlMLX relies on Perl scripts (hence its name !) which supposes of course that Perl
has been installed on the platform.

This chapter is organized as follows:

• Section 5.2 lists the environment variables that shall be set for PerlMLX to run

122

Environment variables

• Section 5.3 describes PerlMLX "HMI mode"

• Section 5.4 describes PerlMLX "standalone mode"

• Section 5.5 describes how to launch Monolix without PerlMLX (the so called "Batch
mode")

• Section 5.6 describes how to use PerlMLX on cluster installations.

5.2 Environment variables

When used in "HMI mode", PerlMLX requires the environment variable ‘MLX_HOME’ to be
set to:

• on standalone version to:
‘/My/Path/To/Monolix.4.2.2-standalone-linux32/bin/Monolix_mcr/runtime’

• on MATLAB version to: ‘/My/Path/To/Monolix.4.2.2-standalone-linux32/runtime’

When used in "command-line mode", it is recommended to setup environment variables
(nothing mandatory but as will be seen later these variables will make the scripts easier to
write):

• ‘MONOLIX’ to: ‘/My/Path/To/Monolix.4.2.2-standalone-linux32’

• ’MONOLIXDATA’ to: ‘/My/Path/To/monolixData/’

These environment variables can be set with the shell commands below:

• Linux:

– type the command lines:
gandalf#> export MONOLIX=/My/Path/To/Monolix.4.2.2-standalone-linux32

– or add the following lines in your ‘.bashrc’ config file
gandalf#> gedit /.bashrc
add the following line at the end of the file ‘.bashrc’:
export MONOLIX=/My/Path/To/Monolix.4.2.2-standalone-linux32

• Under Windows (XP, Vista or 7)

123 Monolix 4.2.2

HMI mode

– type the command lines:
c:\set MONOLIX=c:\My\Path\To\Monolix.4.2.2-standalone-win32

– or use the graphical environment to set up the path and the variable MONOLIX to
c:\My\Path\To\Monolix.4.2.2-standalone-win32

Note: by default Monolix is installed beneath c:\Document And Settings\All Users\ApplicationData

which is a hidden directory (so please refer to your operating system’s documentation if
Monolix directory does not show in your explorer)

5.3 HMI mode

HMI version of PerlMLX is an executable named mlxPerlScript.

The HMI is divided in eight sections:

• "Inputs control": used to define either the project files or the directories (containing the
project files) on which Monolix shall be run.

– If "Directory" is selected user can enter via the "text edit" (or with the help of the
"Browse Directory" button) the directory(ies) which shall be processed. All the poject
files contained in the selected directory(ies) and its sub-directories will be processed.

– If "File" is selected user can enter via the "text edit" (or with the help of the "Browse
File" button) the Mlxtran or XMLX projects that shall be processed.

Whatever is the input selection mode, only the directories / files appended to the list
(through button "Append directory / file to list") will be processed. Press button "See
directories / files list" to control this list (items can be discarded from the list via "Delete
element" button).

• "Output directory": directory where the results will be stored.

• "Working directory": directory where all intermediate and temporary files are stored.

• "MONOLIX directory": directory where Monolix is installed
Something like ‘/My/Path/To/Monolix/matlab’ for MATLAB version and ‘/My/Path/To/Monolix’
(where ‘Monolix.bat/.sh’ can be found) on stand-alone installations.

• "Perl Script file": directory where the Perl script toolsRunner.pl can be found.
Note: Button "Test PERL installation" can be used to verify that "perl" command can be
accessed through the HMI. When this button is pressed a call to ‘perl -v’ (perl version)
is done. If this call is unsuccessfull the "STD OUT / STD ERR" will be painted in yellow
(perl version will be displayed in a white background otherwise). User can then use the
"Set PERL directory" button to select the directory where Perl is installed.

124 Monolix 4.2.2

HMI mode

• "MATLAB control": combo "Use MATLAB" shall be set to "NO" on standalone versions
and "YES" on MATLAB verions (path to MATLAB installation shall then be entered)
Note: path to MATLAB installation is something like ‘Path/To/MATLAB/R2012a’. What is
important is tha a subdirectory ‘bin’ where ‘matlab.exe’ can be found exists under this
path.

• "Threads control": enter the number of threads that can be opened. On multiprocessor
machines this control can be used to force PerlMLX to use the maximum processing
power (or on the contrary limited resources !).

• "Launcher": see below.
Note: it is recommanded to try the perl installation before pressing this button (see "Perl
Script file" item hereabove).

Note: if environment variable ‘MLX_HOME’ has been set properly MONOLIX directory and
path to the Perl script toolsRunner.pl will be automatically set. Since it is possible to detect
the installation’s type (standalone / MATLAB) through this variable, MATLAB combo will also
be automatically set.

Note: it is possible to save and restore configuration via File menu, actions "Export / im-
port mlxPerlScript Cfg"

Note: light green and light red are used to distinguish between valid and invalid directories

125 Monolix 4.2.2

Standalone mode

/ files names.

User shall press the "Launch Simulation" button (in the "Launcher" group box at the bot-
tom of the HMI) to start the simulation. This group box can be docked and will show in the
text edit:

• exact transcript of the launched Perl process

• standard output and error from the launched Perl process

5.4 Standalone mode

To launch PerlMLX in standalone mode, user shall use script ‘toolsRunner.pl’. Several
options are made available to control this script (these options are introduced in the following
sub section). It is also possible to control these options via a reusable configuration file (which
is introduced in the second subsection).

5.4.1 Options
Here are the different options available for script ‘toolsRunner.pl’:

argument value description

–tool execute name of tools to execute (re-
quired parameter)

–toolhelp display help documentation

–output-directory <directory> output directory path, where the
results are stored

–thread <number of thread> number of simultaneous projects
to run

–input-directories <dir1,..dirN> list of input directories contain-
ing project files

–input-project-list <project1, ...,projectN> input list of projects separated by
comma

–input-project-file-list <project file list> input file containing list of
project files

–use-matlab Matlab version of Monolix in-
stead of standalone

–matlab-path <matlab path> Matlab path (if use-matlab is
set)

–monolix-path <path of monolix> Monolix path

–working-directory <directory> directory where all intermediate
and temporary files are stored

–config <path of configuration file> config file path

126 Monolix 4.2.2

Standalone mode

In the following paragraphs we give some examples of correct instruction sets :

Running Monolix on a demo file

gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl \

-–tool=execute \

-–input-project-list=$MONOLIXDATA/monolix422/work/Demos/categorical_covariate/PDsim1_project.mlxtran \

-–output-directory=$MONOLIXDATA/monolix422/work/output \

-–monolix-path=$MONOLIX/bin \

-–working-directory=/home/gandalf/tmp

In this example a standalone version of Monolix is launched (with the parameter ‘–monolix-path’)
using the Mlxtran project ‘PDsim1_script.mlxtran’. The output directory has been set to
‘/home/gandalf/monolixData/monolix422/work/output’

Running Monolix on the Demos directory

gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl \

-–tool=execute \

-–input-directories=$MONOLIXDATA/monolix422/work/Demos \

-–monolix-path=$MONOLIX/bin \

-–output-directory=$MONOLIXDATA/monolix422/work/output \

-–working-directory=/home/gandalf/tmp

This illustrates an execution of Monolix on all XMLX and Mlxtran projects present in the
directory ‘$MONOLIXDATA/monolix422/work/Demos’

Running Monolix on a project file list
First edit a file list using a simple text editor (gedit, emacs, vim, kwrite, . . .) :

gandalf#> gedit myslist.lst then execute ‘toolsRunner.pl’ :
gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl \

-–tool=execute \

-–input-project-file-list=./mylist.lst \

-–output-directory=$MONOLIXDATA/monolix422/work/output \

-–monolix-path=$MONOLIX/bin \

-–working-directory=/home/gandalf/tmp

127 Monolix 4.2.2

Standalone mode

5.4.2 Setting up the configuration file

Script ‘toolsRunner.pl’ can also be used with ’config’ option and a ‘.ini’ configuration file
(the file can be created using a simple text editor). Here is the information that this configuration
file shall contain:

subsection parameters description

[path] Matlab
Matlab path (required for a
Matlab version of Monolix)

Monolix Monolix path
[monolix] standalone standalone version?

[program-generic-options] thread

number of threads: it is rec-
ommended that the number of
threads is smaller or equal to the
number of processor cores avail-
able on the computer

[program-execute-options]
workingDirectory directory used by PerlMLX to

store intermediate results

command prefix

add a command prefix to a
Monolix command, this param-
eter is useful in cluster mode (ex:
use of ‘qsub’ before the Monolix
command)

script-embed

Monolix generates a script con-
taining a command line; this pa-
rameter is used in the cluster
mode: the qsub command is run
on a script without any com-
mand line argument, with the
command line embedded into a
script

useProjectDirectoryToSaveResult
the default directory of results
is stored in same directory as
project directory

In the following paragaphs examples of correct configuration files are given:

• example using the Matlab version under Linux OS
[path]
; Matlab version of Monolix

128 Monolix 4.2.2

Standalone mode

; Matlab path
matlab=/opt/matlab/
; directory of Monolix
monolix=/opt/Monolix-4.2.2-matlab-linux32
[monolix]
; standalone version? No
standalone=false
[program-generic-options]
; execution on the nodes
thread=2
[program-execute-options]
; PerlMLX need a temporary directory to store intermediate files
workingDirectory=/tmp

• example using the standalone version under Linux OS
[path]
; Monolix directory
monolix=/opt/Monolix-4.2.2-standalone-linux32/bin
[monolix]
; use of the standalone version
standalone=true
[program-generic-options]
; execution on the nodes
thread=2
[program-execute-options]
; PerlMLX need a temporary directory to store intermediate files
workingDirectory=/tmp

• example using the Matlab version on a Linux cluster
[path]
; Matlab version of Monolix
; Matlab path
matlab=/opt/matlab/
; directory of Monolix
monolix=/opt/Monolix-4.2.2-standalone-linux32
[monolix]
; not the standalone version
standalone=false
[program-generic-options]
; on a cluster multi-threading is not necessary:
; the cluster uses a queue to dispatch program
; execution on the nodes

129 Monolix 4.2.2

Standalone mode

thread=1
[program-execute-options]
; PerlMLX need a temporary directory to store intermediate files
workingDirectory=/tmp

; Specific options to run Monolix on a cluster
; qsub is generally the program to submit a process on a cluster
; qsub is typically applied to a script, script-embed option
; allows to create a shell script containing the Monolix command
command-prefix=qsub -V -u gandalf
script-embed=true

Then, a user working on a cluster can run Monolix as usual:
gandalf#> perl /opt/Monolix-matlab/perlScripts/toolsRunner.pl \

-–tool=execute \

-–config=$MONOLIXDATA/work/myconfig.ini \

-–input-directories=$MONOLIXDATA/monolix422/work/Demos \

-–output-directory=$MONOLIXDATA/monolix422/work/output

Running Monolix on a demo file

gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl \

-–tool=execute \

-–input-project-list=$MONOLIXDATA/monolix422/work/Demos/categorical_covariate/PDsim1_project.mlxtran \

-–output-directory=$MONOLIXDATA/monolix422/work/output \

-–config=$MONOLIXDATA/work/myconfig.ini

Running Monolix on the Demos directory

gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl \

-–tool=execute \

-–input-directories=$MONOLIXDATA/monolix422/work/Demos \

-–output-directory=$MONOLIXDATA/monolix422/work/output \

-–config=$MONOLIXDATA/work/myconfig.ini

130 Monolix 4.2.2

Batch mode in depth

Running Monolix on a project file list

gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl -–tool=execute \

-–input-project-file-list=./mylist.lst \

-–output-directory=$MONOLIXDATA/monolix422/work/output \

-–config=$MONOLIXDATA/work/myconfig.ini

5.5 Batch mode in depth

5.5.1 Running Monolix without PerlMLX

It is possible to run Monolix using a simple command line:

• with the standalone version of Monolix

$MONOLIX/bin/Monolix.sh [–nowin] \
-p <project> \
-f [run|saem|fim|ll|graphics]

• with the Matlab version of Monolix (the command has to be launched from the matlab
directory of the installation of Monolix , i.e. <monolix install path>/matlab)

matlab -wait \
-nosplash \
-nodesktop \
-r "monolix(’-nowin’, \

’-p’,’<project>’, \
’-f’,’[run|saem|fim|ll|graphics]’, \
’-destroy’ \

),exit"

5.5.2 Monolix Program options

• -nowin : without opening a window, mandatory in no-desktop environments.

• -p <project> : project to run

• -f run|saem|fim|ll|graphics

– run: run a workflow

131 Monolix 4.2.2

Monolix on cluster

– saem: estimate population parameters

– fim: estimate the standard errors of the estimates and Fisher information matrix

– ll: estimate the log-likelihood

– graphics: generate the result graphics

5.5.3 Example

Run the standalone version of Monolix on the project PDsim1_project.mlxtran:
$MONOLIX/bin/Monolix.sh \

–nowin \

–p $MONOLIXDATA/monolix422/work/Demos/categorical_covariates/PDsim1_script.mlxtran -f run

Here Monolix is executed without displaying a window (option -nowin).

Example: shell script to run Monolix on all Mlxtran files on a directory:� �
1 i f [−d $1] ; then
2 for mlxtran_i in ’ f i nd $1 −type f | grep mlxtran$ ’ ; do
3 echo "Run Monolix in $mlxtran_i" ;
4 $MONOLIX/bin /Monolix . sh −nowin −p $mlxtran_i −f run
5 end
6 else
7 echo "$1 is not a directory"
8 f i
� �
5.6 Monolix on cluster

5.6.1 Cluster filesystem

To run Monolix on a cluster, each cluster node must have access to the Monolix directory
and to the user home directory.

Each node shares a common file system containing the user directories. The common filesys-
tem may also contain Matlab and Monolix . However, in the case of the standalone version
of Monolix , it is recommended to have Monolix installed on a local drive for each node, since
the standalone binary is large: if installed on the network, the startup time on a cluster may
take too long.

132 Monolix 4.2.2

Monolix on cluster

5.6.2 Task submission mechanism

Generally, a task is submitted to the cluster using a specific command, e.g. qsub in the
case of Torque, PBS or GridEngine (former SGE). This command runs a script, provided as
parameter, on a cluster node choosen by the cluster scheduler.

The Monolix batch tool allows to run this command through the configuration file. To
enable the cluster functionnality, the options command-prefix and script-embed must be set in
the configuration file, where command-prefix is the command used to submit a task (generally
qsub) and script-embed allows to encapsulate the low level Monolix command (see Section
5.5.1).

At this point, when the command toolsRunner.pl is executed, each instance of Monolix
takes place on a cluster node chosen by the cluster scheduler.

5.6.3 Example

Setting up a configuration file
The following configuration file enables a cluster mode (e.g. Torque, PBS, GridEngine). A

task is submitted to the cluster using the command ’qsub’ which runs a script on a cluster mode.

[path]
; use a Matlab version of Monolix
; Matlab path
matlab=/opt/matlab/
; Monolix directory
monolix=/opt/Monolix-4.2.2-standalone-linux32
[monolix]
;do not use standalone version
standalone=false
[program-generic-options]
; one thread: on a cluster multi-threading is not necessary:
; the cluster uses a queue to dispatch program
; execution on the nodes
thread=1
[program-execute-options]
; PerlMLX needs a temporary directory to store intermediate files
workingDirectory=/tmp
; Specifics options to run Monolix on a cluster
; qsub is generally the program to submit a process on a cluster
; Typically qsub uses a script as the process to run; the script-embed option
; allows to create a shell script containing the Monolix command
command-prefix=qsub -V -u gandalf
script-embed=true

133 Monolix 4.2.2

Monolix on cluster

Submit tasks on a cluster
Here each project stored in the directory $MONOLIXDATA/monolix422/work/Demos is run on

the cluster nodes. This directory has to be shared by all nodes (typically, under Linux OS, with
NFS), with exactly the same path.

gandalf#> perl $MONOLIX/perlScripts/toolsRunner.pl –tool=execute \

–input-directories=$MONOLIXDATA/monolix422/work/Demos \

–output-directory=$MONOLIXDATA/monolix422/work/output \

–config=$MONOLIXDATA/work/myconfig.ini

where MONOLIX and MONOLIXDATA are environment variables defined as explained in Section
5.2.

134 Monolix 4.2.2

Chapter 6

Validation suite

6.1 Introduction

The validation suite is the highest level of the tests, and is provided on request. It consists
in a set of project runs, whose results are compared with references results. A customer can also
add his own projects in the suite. A more detailed documentation on the testing strategy and
the development processes is also available on request.

The process of the validation suite consists in taking a set of projects with predefined scenarii
and to launch them with Monolix . The result files are then compared with the reference files.
Due to the Matlab kernel, slight numerical differences can appear between two Matlab versions
for a same project. This is why the validation suite is launched for each operating system and
each Matlab version with different references. It must be executed in batch mode, i.e. via a
command line, without a graphical interface.

6.2 Prerequisites

The informations below are required to run the validation suite in batch mode:

• directory path of Monolix,

• directory path of Matlab (does not apply to standalone Monolix)

• directory path of references files

135

Combinations

A Perl installation is also required to run the validation suite.

6.3 Combinations

As described above, several sets of references results are required to cover platform variabil-
ities. The combinations are listed as follows.

Monolix version Matlab version Operating system
Install.exe 2008b Windows 32 bits

R2010a-Install.exe 2010a Windows 32 bits
R2010b-Install.exe 2010bSP1 Windows 32 bits
R2010b-Install.exe 2011a Windows 32 bits
R2010b-Install.exe 2011b Windows 32 bits
R2010b-Install.exe 2012a Windows 32 bits

standalone2008b-linux32.sh 2008b Linux 32 bits
matlab2010a-linux32.sh 2010a Linux 32 bits

matlab2010bSP1-linux32.sh 2010bSP1 Linux 32 bits
matlab2010bSP1-linux32.sh 2011a Linux 32 bits
matlab2010bSP1-linux32.sh 2011b Linux 32 bits
matlab2010bSP1-linux32.sh 2012a Linux 32 bits
standalone2008b-linux64.sh 2008b Linux 64 bits
matlab2010a-linux64.sh 2010a Linux 64 bits

matlab2010bSP1-linux64.sh 2010bSP1 Linux 64 bits
matlab2010bSP1-linux64.sh 2011a Linux 64 bits
matlab2010bSP1-linux64.sh 2011b Linux 64 bits
matlab2010bSP1-linux64.sh 2012a Linux 64 bits

6.4 Extensive coverage through the demo projects

The projects from the validation suite are designed to provide maximum coverage of the set
of functionalities of MONOLIX. The two types of structural models, Matlab and MLXTRAN,
are included in these projects. Currently, the suite includes 17 projects:

• Emax_errorband_project : transformed error model,

• iov3_project, ss2_project : inter occasion variability (IOV) with several levels,

136 Monolix 4.2.2

Execution

• theophylline2_project, warfarin_PKPD1_project, warfarin_PKPD4_project,
warfarin_PK_project : methodologic cases with classical database,

• categorical1_project, count1_project : discrete observed variables,

• pkrtteExpo_project, rtteWeibullCount_project : repeated time to event,

• PKmixt_project : model of mixtures and mixture models,

• PDsim1_project, phenobarbital2_project : categorical covariates,

• bolus_1cptMM_project, demo_project, sequential_oral0_oral1_project : ad-
vanced and complex administrations.

6.5 Execution

Program parameters

argument value description
–help display help documentation

–output-directory <directory> output directory path, where the
results are stored

–thread <number of thread> number of simultaneous projects
to run

–reference-directory <directory> reference directory containing
project files

–use-matlab true ou false Matlab version of Monolix in-
stead of standalone

–matlab-path <matlab path> Matlab path (if use-matlab is
set)

–monolix-path <path of monolix> Monolix path
–keep-output true ou false saves output directory

Examples

Here we set the environment variable

• ‘MONOLIXSTD’ to ‘/opt/Monolix.4.2.2-standalone-linux32’,

• ‘MONOLIX’ to ‘/opt/Monolix.4.2.2-matlab2010bSP1-linux32’,

137 Monolix 4.2.2

Execution

• ‘MATLAB’ to ‘/opt/MATLAB/R2010b’ and

• ‘VALIDATIONSUITE’ to ‘/home/gandalf/validationSuite’

To set environment variables, see Section 5.2.

Running the validation suite with standalone version

Go to the validation suite directory (here /home/gandalf/validationSuite/scripts).
Then,

gandalf#> perl validationSuite.pl \
--reference-directory=$VALIDATIONSUITE/reference/lin32/2008b \
--monolix-path=$MONOLIXSTD/bin \
--output-directory=/home/gandalf/output

This illustrates an execution of Monolix on all XMLX and Mlxtran projects present in the
directory ‘$VALIDATIONSUITE/reference/lin32/2008b’. If the validation is successful, the user
should get

138 Monolix 4.2.2

Execution

Running the validation suite with matlab version

Go to the validation suite directory (here /home/gandalf/validationSuite/scripts).
Then,

gandalf#> perl validationSuite.pl --use-matlab=true \
--reference-directory=$VALIDATIONSUITE/reference/lin32/2010b \
--monolix-path=$MONOLIX/matlab \
--output-directory=/home/gandalf/output
--matlab-path=$MATLAB

139 Monolix 4.2.2

Execution

Running the validation suite with matlab version and saving output directory

In the validation fails, it can be useful to store the output directory using the option ’keep-output’:

gandalf#> perl validationSuite.pl --use-matlab=true --keep-output=true \
--reference-directory=$VALIDATIONSUITE/reference/lin32/2010b \
--monolix-path=$MONOLIX/matlab \
--output-directory=/home/gandalf/output
--matlab-path=$MATLAB

The display shows the fields in the results which are not equal to reference results, and
indicates the order of errors.

140 Monolix 4.2.2

Execution

It exists two kinds of error:

• absolute error

• relative error

During the comparison, the absolute error is used. In the case where this error is too large
(> 10−3), the relative error is used.

141 Monolix 4.2.2

Appendix A

The statistical models

A.1 The nonlinear mixed effects model

Detailed and complete presentations of the nonlinear mixed effects model can be found in
[5, 6, 21]. See also the many references therein.

We consider the following general nonlinear mixed effects model for continuous outputs:

yij = f(xij , ψi) + g(xij , ψi, ξ)εij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni (A.1)

Here,

• yij ∈ R is the jth observation of subject i,

• N is the number of subjects,

• ni is the number of observations of subject i,

• the regression variables, or design variables, (xij) are assumed to be known, xij ∈ Rnx ,

• for subject i, the vector ψi = (ψi,` ; 1 ≤ ` ≤ nψ) ∈ Rnψ is a vector of nψ individual
parameters:

ψi = H(µ, ci, ηi) (A.2)

where

– ci = (cim ; 1 ≤ m ≤M) is a known vector of M covariates,

– µ is an unknown vector of fixed effects of size nµ,

142

Individual parameters model

– ηi is an unknown vector of normally distributed random effects of size nη:

ηi ∼i.i.d. N (0,Ω)

• the residual errors (εij) are random variables with mean zero and variance 1,

• the residual error model is defined by the function g and some parameters ξ.

Here, the parameters of the model are θ = (µ,Ω, ξ). We will denote `(y; θ) the likelihood of
the observations y = (yij ; 1 ≤ i ≤ n , 1 ≤ j ≤ ni) and p(y, ψ; θ) the likelihood of the complete
data (y, ψ) = (yij , ψi ; 1 ≤ i ≤ n , 1 ≤ j ≤ ni). Thus,

`(y; θ) =

∫
p(y, ψ; θ) dψ.

Let us see now the statistical model used in Monolix 4.2.2 more in details.

A.2 The statistical model for the individual parameters

In Monolix 4.2.2 , we assume that ψi is a transformation of a Gaussian random vector ϕi:

ψi = h(ϕi) (A.3)

where, by rearranging the covariates (cim) into a matrix Ci, ϕi can be written as

ϕi = Ciµ+ ηi (A.4)

A.2.1 Examples of transformations

Here, different transformations (h`) can be used for the different components of ψi = (ψi,`)
where ψi,` = h`(ϕi,`) for ` = 1, 2, . . . , `. Let us denote by Φ(u) the cumulative distribution
function of a Gaussian distributed random variable.

• ψi,` has a log-normal distribution if h`(u) = eu,

• assuming that ψi,` takes its values in (0, 1), we can use a logit transformation h`(u) =
1/(1 + e−u), or a probit transformation h`(u) = Φ(u).

• assuming that ψi,` takes its values in (A,B), we can define h`(u) = A+ (B−A)/(1 + e−u),
or h`(u) = A+ (B −A)Φ(u).

143 Monolix 4.2.2

Individual parameters model

In the following, we will use either the parameters ψi or the Gaussian transformed parameters
ϕi = h−1(ψi).

The model can address continuous and/or categorical covariates.

A.2.2 Example of continuous covariate model

Consider a PK model that depends on volume and clearance and consider the following
covariate model for these two parameters:

CLi = CLpop

(
Wi

Wpop

)βCL,W (Ai
Apop

)βCL,A
eηi,1

Vi = Vpop

(
Wi

Wpop

)βV,W
eηi,2

Where Wi and Ai are the weight and the age of subjet i and where Wpop and Apop are some
“typical” values of these two covariates in the population. Here, ψi will denote the PK parameters
(clearance and volume) of subject i and ϕi its log-clearance and log-volume. Let

W ?
i = log

(
Wi

Wpop

)
; A?i = log

(
Ai
Apop

)
Then,

ϕi =

(
log(CLi)
log(Vi)

)

=

(
1 0 W ?

i A?i 0
0 1 0 0 W ?

i

)
log(CLpop)
log(Vpop)
βCL,W
βCL,A
βV,W

+

(
ηi,1
ηi,2

)

= Ciµ+ ηi

A.2.3 Example of categorical covariate model

Assume that some categorical covariate Gi takes the values 1, 2, . . . , K. Assume that if
patient i belongs to group k, i.e. Gi = k, then

log(CLi) = log(CLpop,k) + ηi

where CLpop,k is the population clearance in group k.

144 Monolix 4.2.2

The residual error model

Let k? be the reference group. Then, for any group k, we will decompose the population
clearance CLpop,k as

log(CLpop,k) = log(CLpop,k?) + βk

where βk? = 0.

The variance of the random effects can also depend on this categorical covariate:

ηi ∼ N (0,Ωk) if Gi = k

Remark: It is assumed in Monolix 4.2.2 that the correlation matrix of the random effect is
the same for all the groups. In other words, only the variances of the random effects can differ
from one group to another.

Monolix

Choice of the transformation is described in Section 3.3.5.
Selection of the covariate model is described in Section 3.3.3.
Examples with categorical covariates are given in Section 4.4.

A.3 The residual error model

The within-group errors (εij) are supposed to be Gaussian random variables with mean zero
and variance 1. Furthermore, we suppose that the εij and the ηi are mutually independent.

Different error models can be used in Monolix 4.2.2 :

• the constant error model assumes that g = a and ξ = a,

• the proportional error model assumes that g = b f and ξ = b,

• a combined error model assumes that g = a+ b f and ξ = (a, b),

• an alternative combined error model assumes that g =
√
a2 + b2 f2 and ξ = (a, b),

• a combined error model with power assumes that g = a+ b f c and ξ = (a, b, c),

• . . .

Furthermore, all these error models can be applied to some transformation of the data:

t(yij) = t(f(xij , ψi)) + g(xij , ψi, ξ)εij (A.5)

For example:

145 Monolix 4.2.2

Multi-responses model

• the exponential error model assumes that y > 0:

t(y) = log(y)

y = fegε

• the logit error model assumes that 0 < y < 1:

t(y) = log(y/(1− y))

y =
f

f + (1− f)e−gε

• the logit error model can be extended if we assume that A < y < B:

t(y) = log((y −A)/(B − y))

y = A+ (B −A)
f −A

f −A+ (B − f)e−gε

It is possible with Monolix to assume that the residual errors (εij) are correlated:

corr(εi,j , εi,j+1) = ρ(xi,j+1−xi,j) (A.6)

Here, we assume that 0 ≤ ρ < 1 and that for any i, (xi,j , 1 ≤ j ≤ ni) is an increasing sequence
of regression scalar variables.

Monolix

Selection of the residual error model is described Section 3.3.7.
Several examples of residual error models are provided with the demos:

• combined error model: warfarin/warfarin_PK_project

• exponential error model: PK/Bolus1cptMM_project

• extended logit error model: error model/Imax_errorband_project

• autocorrelated residual errors: error model/infusion_correrror_project

.

A.4 Multi-responses model

The basic model can be extended to multi-responses:

y
(1)
ij = f1(x

(1)
ij , ψi) + g1(x

(1)
ij , ψi; ξ1)ε

(1)
ij , 1 ≤ i ≤ N , 1 ≤ j ≤ ni1

...
...

y
(L)
ij = fL(x

(L)
ij , ψi) + gL(x

(L)
ij , ψi; ξL)ε

(L)
ij , 1 ≤ i ≤ N , 1 ≤ j ≤ niL

146 Monolix 4.2.2

Model with censored data

This is useful, for example, for PKPD models in which the input of the PD model x(2)
ij is the

concentration, that is the output of the PK model f1(x
(1)
ij , ψi).

Monolix

How to handle models with multiple outputs is described in Section 4.2.
Several examples are provided using the warfarin data:
warfarin_PKPD1_project, warfarin_PKPD2_project, warfarin_PKPD3_project,
warfarin_PKPD4_project.

A.5 Model with censored data

A.5.1 BLQ data

In some context, because of assay limitation, when data yij are inferior to a limit of quantifi-
cation (LOQ), we do not observe yij but only the censored value LOQ. These data are usually
named BLQ (Below the Limit of Quantification) data or left-censored data.

Let denote Iobs = {(i, j)|yij ≥ LOQ} and Icens = {(i, j)|yij ≤ LOQ} the index sets of the
uncensored and censored observations respectively. For (i, j) ∈ Icens, let ycensij = yij denote the
unknown value of the censored observation j of subject i. Let denote ycensi the vector of censored
observations of subject i. Finally, we observe

yobsij =

{
yij if (i, j) ∈ Iobs,
LOQ if (i, j) ∈ Icens.

We denote yobsi = (yobsi1 , . . . , yobsini) as the observations of subject i and yobs = (yobs1 , . . . , yobsN) the
total observations dataset.

A.5.2 Interval censored data

It is possible now also to model interval censored data, i.e data where it is only known that yij
is above a limit of detection LODij but below the limit of quantification ycensij ∈ [LODij , LOQij).
The intervals could be (−∞, LOQij) (left censored data, as above) and [LOQij ,+∞) (right
censored data).

Monolix

How Monolix handles BLQ data is described in Section 4.5.

147 Monolix 4.2.2

Inter-occasion variability

A.6 Modeling the inter-occasion variability

We will denote yikj the jth observation for subject i during occasion k:

yikj = f(ψik, tikj) + g(ψik, tikj , ξ)εikj (A.7)

Here, ψik = h(ϕik) is the individual parameter of subject i at occasion k:

ϕik = Cik µ+ ηi + κik (A.8)

- Cik is the matrix of covariates of subject i at occasion k,

- ηi random effect of subject i (inter-subject variability): ηi ∼ N (0,Ω),

- κik random effect of subject i at occasion k (inter-occasion variability): κik ∼ N (0,Γ),

- ηi and κik are assumed to be independent,

- Ω inter-subject variability covariance matrix,

- Γ inter-occasion variability covariance matrix.

A.7 Discrete data models

The basic model proposed in (A.1) is a regression model used for fitting continuous data that
can be extended for categorical data or count data models. Assume that (yij) takes its values
in {0, 1, 2, . . .}. We define the conditional likelihood of the observations using a mixed effects
model:

P(yij = k|ψi) = f(k, xij , ψi) , 1 ≤ i ≤ N , 1 ≤ j ≤ ni (A.9)

In other words, for any i, the probability that yij takes the value k depends on some (unknown)
individual parameter ψi and possibly on some (known) design variable xij .

A mixed hidden Markov models (mixed HMM, or MHMM) assumes that there exists some
non observed sequences (zij) (the states) that take their values in 1, 2, . . . L such that, for any i,

• (zij , j ≥ 1) is a Markov Chain,

• conditionally to the sequence of states (zij), the (yij) are independent random variables

• the transition probabilities P(zi,j+1 = v|zij = u) and the emission probabilities (i.e. condi-
tional probabilities) P(yij = k|zij = u) depend on some individual parameters ψi.

148 Monolix 4.2.2

Mixture models and model mixtures

Monolix

How to model categorical data, count data and HMM is described respectively in
Sections Section 4.7.1, Section 4.7.2 and Section 4.7.4.

A.8 Mixture models and model mixtures

A.8.1 Mixture models

In Monolix, a mixture model assume that there exist some “latent” categorical covariate
G that takes K values. Then, the mixture model reduces to the categorical covariate model
described Section A.2 but here, the categorical covariates are unknown: they are treated as
random variables and the probabilities

πk = P(Gi = k)

are part of the statistical model and should be estimated as well.

A.8.2 Model mixtures

Let f1, f2, . . . fK be K different structural models,

• Between Subject Model Mixture (BSMM)

We assume that some categorical covariate G takes K values and that

yij = fk(xij , ψi) + εij , if Gi = k

In a BSMM model, the “latent” categorical covariates are unknown: they are treated as
random variables and the probabilities

πk = P(Gi = k)

are part of the statistical model and should be estimated as well.

• Within Subject Model Mixture (WSMM)

For any patient i, let pi,1, pi,2, . . . , pi,K be K proportions such that

yij = fi(xij , ψi) + εij

fi = pi,1f1 + pi,2f2 + . . .+ pi,KfK

In a WSMM model, the proportions (pi,k) are additional individual parameters that should
be modeled as well (under the constraint that the sum is 1).

149 Monolix 4.2.2

Prior models

Monolix

How to use mixture models is described in Section Section 4.10.1.
Examples of BSMM and WSMM with Monolix are presented in Section 4.10.2.

A.9 Prior models on fixed effects parameters

It is possible to define prior distribution models on the fixed effects. The allowed distribu-
tions:

• log-normal

• logit-normal

• probit-normal

• user-defined: transformation of a gaussian distribution:

h−1(µ) ∼ N (µ0, σ
2
µ)

where h is any increasing function defined for all real numbers.

Monolix

How to use priors on fixed effects is described in Section Section 4.3.

150 Monolix 4.2.2

Appendix B

Preferences

This appendix provides the details of Monolix preferences. The preferences are defined in
the preferences.xmlx file. The file is loaded when Monolix is started.

B.1 General

The user can modify the data to customize his own preferences.

1. Go to directory monolixData in users folder, then /config/ and open the preference.xmlx
file.

2. Modify the chosen fields, then save and restart Monolix if the software is opened.

If the user wants to find the default configuration again, the preference.xmlx file of
monolixData folder must be deleted.

This chapter describes the correspondences between the file data and preferences in Monolix.

B.2 Graphic settings

Generally, data are visual settings of graphics.

There are 3 kinds of patterns:

151

Graphic settings

1. matrix - value corresponds to the number of rows and vector contains all the elements of
the matrix.

2. list of chars - <charList> tag contains a set of tags <char> which have chars as value.

3. numeric value - can be a string, an integer or a real.

B.2.1 Categorized Data

Data Description Type
fill_cat_color Color of theoretical distribution line matrix
fill_out_color Outliers color matrix

fill_CI Color of confidence intervals matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

line_Color Lines color matrix
bins_Color Color of bins limit lines matrix

figure_background Color of figure background matrix

B.2.2 Covariates

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value
spline_LineStyle Line style of spline value
spline_LineWidth Line width of spline value

spline_Color Line color of spline matrix
regression_LineStyle Style of regression line value
regression_LineWidth Width of regression line value

regression_Color Color of regression line matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

line_Color Lines color matrix
figure_background Color of figure background matrix

152 Monolix 4.2.2

Graphic settings

B.2.3 Parameters distribution

Data Description Type
histo_Color Histogram color matrix

paramEstimatedPDF_LineStyle Style of non parametric pdf line value
paramEstimatedPDF_LineWidth Width of non parametric pdf line value

paramEstimatedPDF_Color Color of non parametric pdf line matrix
predictedPdf_LineStyle Style of population distribution line value
predictedPdf_LineWidth Width of population distribution line value

predictedPdf_Color Color of population distribution line matrix
predictedEstimatedPDF_LineStyle Style of theoretical median line value
predictedEstimatedPDF_LineWidth Width of theoretical median line value

predictedEstimatedPDF_Color Color of theoretical median line matrix
confidence_LineStyle Style of confidence intervals line value
confidence_LineWidth Width of confidence intervals line value

confidence_Color Color of confidence intervals line matrix
figure_background Color of figure background matrix

B.2.4 Individual fits

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value

cens_Color Censored data colors matrix
cens_Marker Censored data markers List of characters

cens_MarkerSize Size of censored data markers value
populationFits_Color Color of population fits line matrix

populationFits_LineStyle Style of population fits line value
populationFits_LineWidth Width of population fits line value

IndividualFits_Color Color of individual fits line matrix
IndividualFits_LineStyle Style of individual fits line value
IndividualFits_LineWidth Width of individual fits line value

percentile Percentile marker value
confidence_pop_color Color of prediction interval line matrix

confidence_pop_linestyle Style of prediction interval line value
median_pop_linestyle Style of median line value

median_pop_color Color of median line matrix
figure_background Color of figure background matrix

153 Monolix 4.2.2

Graphic settings

B.2.5 Joint distribution

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value
spline_LineStyle Line style of spline value
spline_LineWidth Line width of spline value

spline_Color Line color of spline matrix
regression_LineStyle Style of regression line value
regression_LineWidth Width of regression line value

regression_Color Color of regression line matrix
figure_background Color of figure background matrix

B.2.6 Predictions vs observations

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value

cens_Color Censored data colors matrix
cens_Marker Censored data markers List of characters

cens_MarkerSize Size of censored data markers value
spline_LineStyle Line style of spline value
spline_LineWidth Line width of spline value

spline_Color Line color of spline matrix
regression_LineStyle Style of regression line value
regression_LineWidth Width of regression line value

regression_Color Color of regression line matrix
figure_background Color of figure background matrix
segments_LineStyle Line style of segments value
segments_LineWidth Line width of segments value

segments_Color Line color of segments matrix

154 Monolix 4.2.2

Graphic settings

B.2.7 Residuals

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value

cens_Color Censored data colors matrix
cens_Marker Censored data markers List of characters

cens_MarkerSize Size of censored data markers value
spline_LineStyle Line style of spline value
spline_LineWidth Line width of spline value

spline_Color Line color of spline matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

line_Color Lines color matrix
bins_Color Color of bins limit lines matrix

plot_emp_color Color of empirical percentile line matrix
plot_emp_linestyle Style of empirical percentile line List of characters
plot_emp_linewidth Width of empirical percentile line value
plot_emp_marker Marker of outlier dots value

plot_emp_markersize Size of outlier dots marker value
plot_out_color Color of outlier dots matrix
plot_sim_color Color of theoretical percentile line matrix

plot_sim_linewidth Width of theoretical percentile lines value
plot_sim_linestyle Style of theoretical percentile lines List of characters

fill_cat_color Color of confidence interval matrix
fill_out_color Color of outliers area matrix

regression_LineStyle Style of regression line value
regression_LineWidth Width of regression line value

regression_Color Color of regression line matrix
histo_Color Histogram color matrix

empdens_LineStyle Style of empirical pdf line value
empdens_LineWidth Width of empirical pdf line value

empdens_Color Color of empirical pdf line matrix
thdens_LineStyle Style of theoretical empirical pdf line value
thdens_LineWidth Width of theoretical empirical pdf line value

thdens_Color Color of theoretical empirical pdf line matrix
figure_background Color of figure background matrix

155 Monolix 4.2.2

Graphic settings

B.2.8 Spaghetti

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value

cens_Color Censored data colors matrix
cens_Marker Censored data markers List of characters

cens_MarkerSize Size of censored data markers value
line_LineStyle Lines style value
line_LineWidth Lines width value

figure_background Color of figure background matrix

B.2.9 Prediction distribution

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value
fill_shading Prediction distribution area matrix

fill_shading_discrete Prediction distribution area in discrete case matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

bins_Color Color of bins limit lines matrix
plot_emp_color Color of empirical percentile line matrix

plot_emp_linestyle Style of empirical percentile line List of characters
plot_emp_linewidth Width of empirical percentile line value

median_color Color of median line matrix
figure_background Color of figure background matrix

For fill_shading and fill_shading_discrete settings, a 2 × 3 matrix is necessary, that
corresponds to the two limit colors used to fill the areas.

156 Monolix 4.2.2

Graphic settings

B.2.10 VPC

Data Description Type
data_Color Data colors matrix

data_Marker Data markers List of characters
data_MarkerSize Size of data markers value

cens_Color Censored data colors matrix
cens_Marker Censored data markers List of characters

cens_MarkerSize Size of censored data markers value
line_LineStyle Lines style value
line_LineWidth Lines width value

line_Color Lines color matrix
plot_emp_color Color of empirical percentile line matrix

plot_emp_linestyle Style of empirical percentile line List of characters
plot_emp_linewidth Width of empirical percentile line value
plot_emp_marker Marker of outlier dots value

plot_emp_markersize Size of outlier dots marker value
plot_out_color Color of outlier dots matrix
plot_sim_color Color of theoretical percentile line matrix
plot_sim_marker Marker of theoretical percentile matrix

plot_sim_markersize Size of theoretical percentile marker matrix
plot_sim_linewidth Width of theoretical percentile lines value
plot_sim_linestyle Style of theoretical percentile lines List of characters

fill_cat_color Color of confidence interval matrix
fill_out_color Color of outliers area matrix

figure_background Color of figure background matrix

B.2.11 NPC - BLQ

Data Description Type
fill_cat_color Color of theoretical CDF matrix
fill_out_color Color of median line matrix

fill_CI Color of confidence intervals matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

line_Color Lines color matrix
figure_background Color of figure background matrix

157 Monolix 4.2.2

Graphic settings

B.2.12 Time to event (Kaplan-Meier)

Data Description Type
figure_background Color of figure background matrix

fill_shading Confidence interval area matrix
fill_shading_average Confidence interval area for average matrix

median_color Color of median line matrix
median_lineStyle Line style of median value
median_lineWidth Line width of median value

median_average_color Color of average median matrix
median_average_lineStyle Line style of average median value
median_average_lineWidth Line width of average median value

cens_Color Censored data colors matrix
cens_Marker Censored data markers List of characters

cens_MarkerSize Size of censored data markers value
average_color Average line color matrix

average_lineStyle Line style of average value
average_lineWidth Line width of average value
survival_color Survival function line color matrix

survival_lineStyle Survival function line style value
survival_lineWidth Survival function line width value

For fill_shading setting, a 2 × 3 matrix is necessary, that corresponds to the two limit
colors used to fill the areas.

B.2.13 Transition probabilities

Data Description Type
figure_background Color of figure background matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

bins_Color Color of bins limit lines matrix
line_LineStyle Lines style value
line_LineWidth Lines width value

line_Color Lines color matrix

158 Monolix 4.2.2

Graphic settings

B.2.14 Prior distribution

Data Description Type
figure_background Color of figure background matrix

confidence_LineStyle Style of confidence intervals line value
confidence_LineWidth Width of confidence intervals line value

confidence_Color Color of confidence intervals line matrix
histo_Color Histogram color matrix

nonParamPDF_LineStyle Style of non parametric pdf line value
nonParamPDF_LineWidth Width of non parametric pdf line value

nonParamPDF_Color Color of non parametric pdf line matrix
priorPDF_LineStyle Style of prior distribution line value
priorPDF_LineWidth Width of prior distribution line value

priorPDF_Color Color of prior distribution line matrix
medianPDF_LineStyle Style of theoretical median line value
medianPDF_LineWidth Width of theoretical median line value

medianPDF_Color Color of theoretical median line matrix

B.2.15 Individual contribution

Data Description Type
figure_background Color of figure background matrix

bar_Color Color of bars matrix

For bar_Color setting, a 2× 3 matrix is necessary, that corresponds to the two likelihoods.

B.2.16 Convergence of SAEM

Data Description Type
figure_background Color of figure background matrix

159 Monolix 4.2.2

Session related settings

B.3 Session related settings

B.3.1 session

Field Description Type
timestamp_value Use timestamping value
historic_size Size of historic file (projects, models) value
nbDatasetRows (see nbShownColumns in dataSelection gui) value

save_graphics_format Printed graphics format value
lockModels Lock possibility to modify models value
modelFilter Filter of structural model ’none’, ’m’ or

’mlxtran’
useCurrentFolderByDefault Use current folder by default value

editor Editor to use editor path

B.3.2 project

Field Description Type
dosesToAddForSteadyState number of doses to simulate Steady state value

B.3.3 gui

datasetSelection

Field Description Type
nbShownColumns number of columns to show value

nbRows number of rows to show (maximum 10) value

160 Monolix 4.2.2

Bibliography

[1] Allassonnière, S., Kuhn, E., and Trouvé, A. Construction of Bayesian deformable
models via stochastic approximation algorithm: A convergence study. Bernoulli (to appear)
(2010).

[2] Bertrand, J., Comets, E., and Mentré, F. Detecting a gene effect in pharmacokinetic
models: comparison of different methods (poster). PAGE, Brugge (2006).

[3] Chan, P.and Jacqmin, P., Lavielle, M., McFadyen, L., and Weatherley,
B. The use of the SAEM algorithm in MONOLIX software for estimation of popula-
tion pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymp-
tomatic HIV subjects. Journal of Pharmacokinetics and Pharmacodynamics (to appear)
(2010).

[4] Comets, E., Verstuyft, C., Lavielle, M., Jaillon, P., Becquemont, L., and
Mentre, F. Modelling the influence of MDR1 polymorphism on digoxin pharmacokinetic
parameters. European Journal of Clinical Pharmacology 63 (2007), 437–449.

[5] Davidian, M., and Giltinan, D. Nonlinear Models for Repeated Measurement Data.
Chapman and Hall, 1995.

[6] Davidian, M., and Giltinan, D. Nonlinear models for repeated measurements: An
overview and update. JABES 8 (2003), 387–419.

[7] Delattre, M., Del Moral, P., and Lavielle, M. The SAEM algorithm in MONOLIX
for non-linear mixed effects models with stochastic differential equations (poster). PAGE,
Berlin (2010).

[8] Delattre, M., Savic, R., Miller, R., Karlsson, M., and Lavielle, M. Estima-
tion of mixed hidden Markov models with SAEM. Application to daily seizures data. (oral
presentation). PAGE, Berlin (2010).

[9] Delyon, B., Lavielle, M., and Moulines, E. Convergence of a stochastic approxima-
tion version of the EM algorithm. Ann. Statist. 27, 1 (1999), 94–128.

161

BIBLIOGRAPHY

[10] Donnet, S., and Samson, A. Estimation of parameters in incomplete data models defined
by dynamical systems. Journ. of Stat. and Plan. Infer. 50 (2007), 2381–2398.

[11] Girard, P., and Mentré, F. A comparison of estimation methods in nonlinear mixed
effects models using a blind analysis (oral presentation). PAGE, Pamplona (2005).

[12] Jaffrézic, F., Meza, C., Foulley, J., and Lavielle, M. The SAEM algorithm for
the analysis of nonlinear traits in genetic studies. Genetics Selection Evolution 38 (2006),
583–600.

[13] Kuhn, E., and Lavielle, M. Coupling a stochastic approximation version of EM with a
MCMC procedure. ESAIM P&S 8 (2004), 115–131.

[14] Kuhn, E., and Lavielle, M. Maximum likelihood estimation in nonlinear mixed effects
models. Computational Statistics and Data Analysis 49, 4 (2005), 1020–1038.

[15] Lavielle, M., and Kuhn, E. Maximum likelihood estimation in nonlinear mixed effects
models (oral communication). PAGE, Verona (2003).

[16] Lavielle, M., and Mentré, F. Estimation of population pharmacokinetic parameters
of saquinavir in HIV patients and covariate analysis with MONOLIX (poster). PAGE,
Pamplona (2005).

[17] Lavielle, M., and Mentré, F. Estimation of population pharmacokinetic parameters of
saquinavir in HIV patients with the MONOLIX software. Journal of Pharmacokinetics and
Pharmacodynamics 34, 2 (2007), 229–249.

[18] Lavielle, M., Mesa, H., Chatel, K., and Vermeulen, A. Mixture models and model
mixtures with MONOLIX (oral presentation). PAGE, Berlin (2010).

[19] Makowski, D., and Lavielle, M. Using SAEM to estimate parameters of models of
response to applied fertilizer. Jour. of Agr., Bio, and Env. Stat. 11, 1 (2006), 45–60.

[20] Panhard, X., and Samson, A. Extension of the SAEM algorithm for the estimation of
inter-occasion variability: application to the population pharmacokinetics of nelfinavir and
its metabolite m8 (poster). PAGE, Brugge (2006).

[21] Pinheiro, J. C., and Bates, D. M. Mixed-Effects Models in S and S-PLUS. Springer,
New York, 2000.

[22] Samson, A., Lavielle, M., and Mentré, F. Approximation EM algorithm in nonlinear
mixed effects models: an evaluation by simulation (oral communication). PAGE, Uppsala
(2004).

[23] Samson, A., Lavielle, M., and Mentré, F. Extension of the SAEM algorithm to
left-censored data in nonlinear mixed-effects model: application to HIV dynamics model.
Computational Statistics and Data Analysis 51 (2006), 1562–1574.

162 Monolix 4.2.2

BIBLIOGRAPHY

[24] Samson, A., Lavielle, M., and Mentré, F. The SAEM algorithm for non-linear mixed
models with left-censored data and differential systems: application to the joint modeling
of hiv viral load and cd4 dynamics under treatment (oral presentation). PAGE, Brugge
(2006).

[25] Samson, A., Lavielle, M., and Mentré, F. The SAEM algorithm for group comparison
tests in longitudinal data analysis based on nonlinear mixed-effects model. Stat. in Med. 26
(2007), 4860–4875.

[26] Samson, A., Panhard, X., Lavielle, M., and Mentré, F. Generalisation of the SAEM
algorithm to nonlinear mixed effects model defined by differential equations: application to
HIV viral dynamic models (poster). PAGE, Pamplona (2005).

[27] Savic, R., and Lavielle, M. A new SAEM algorithm: Performance in population models
for count data. Journal of Pharmacokinetics and Pharmacodynamics 36 (2009), 367–379.

[28] Savic, R., Mentre, F., and Lavielle, M. Implementation and evaluation of an SAEM
algorithm for longitudinal ordered categorical data with an illustration in pharmacometrics.
The AAPS Journal (to appear) (2010).

[29] Snoeck, E., Chanu, P., Lavielle, M., Jacqmin, P., Jonsson, N., Jorga, K., Gog-
gin, T., Jumbe, S., and Frey, N. Hepatitis C viral dynamics explaining breakthrough,
relapse or response after chronic treatment. Clinical Pharmacology and Therapeutics (AAPS
Outstanding Manuscript Award in Modeling and Simulation) 87 (2010), 706–713.

163 Monolix 4.2.2

	Introduction
	The objectives

	Installing and running Monolix"472
	Downloading packages
	Installation
	Prerequisites
	About Installer
	Directory structure
	About Plugins
	Running Monolix
	Installation use cases
	License

	ChangeLog
	Troubleshooting
	Downloading Monolix
	Running Monolix

	Using Monolix
	Introduction
	The theophylline example

	The main window
	The ``Data and Model'' frame
	The data
	The model function
	The covariate model
	Creating and transforming covariates
	Distribution of the individual parameters
	The covariance model of the random effects
	The observations model

	The ``Initialization'' frame
	Check initial fixed effects
	Use the last estimates

	The ``Algorithm'' frame
	The ``Results'' frame
	Executing tasks
	Estimation of the population parameters
	Estimation of the standard errors
	Estimation of the individual parameters
	Estimation of the log-likelihood
	Computing results
	Running several algorithms
	Algorithms convergence assessment

	Plots and results
	The graphics
	The tables
	The graphics menu bar
	Main interface Graphics Menu
	Stratify
	Settings

	Testing hypotheses
	Simulation
	Publishing the outputs
	The results folder
	Settings
	The population parameters estimation
	The individual parameters estimation
	The log-likelihood
	The results
	Predefined scenarios

	Advanced features
	Libraries of models
	Pharmacokinetic and pharmacodynamic data
	Using priors on a fixed effect
	Categorical covariate model
	Model with censored data
	Modeling BLQ data
	Modeling interval censored data

	Model with inter-occasion variability
	Discrete data models
	ordered categorical data models
	count data models
	discrete Markov models
	hidden Markov models
	repeated time to event models (RTTE)
	joint modelling of continuous and discrete outputs

	Complex residual error models
	autocorrelated residual errors
	residual errors for bounded data

	Complex PK models
	Complex administrations
	Steady-state

	Mixture models and model mixtures
	Mixture models
	Model mixtures

	Tables
	Using Monolix in Matlab command line or scripts
	Full script projects
	Preferences

	PerlMLX and the batch mode
	Introduction
	Environment variables
	HMI mode
	Standalone mode
	Options
	Setting up the configuration file

	Batch mode in depth
	Running Monolix without PerlMLX
	Monolix Program options
	Example

	Monolix on cluster
	Cluster filesystem
	Task submission mechanism
	Example

	Validation suite
	Introduction
	Prerequisites
	Combinations
	Extensive coverage through the demo projects
	Execution

	The statistical models
	The nonlinear mixed effects model
	Individual parameters model
	Examples of transformations
	Example of continuous covariate model
	Example of categorical covariate model

	The residual error model
	Multi-responses model
	Model with censored data
	BLQ data
	Interval censored data

	Inter-occasion variability
	Discrete data models
	Mixture models and model mixtures
	Mixture models
	Model mixtures

	Prior models

	Preferences
	General
	Graphic settings
	Categorized Data
	Covariates
	Parameters distribution
	Individual fits
	Joint distribution
	Predictions vs observations
	Residuals
	Spaghetti
	Prediction distribution
	VPC
	NPC - BLQ
	Time to event (Kaplan-Meier)
	Transition probabilities
	Prior distribution
	Individual contribution
	Convergence of SAEM

	Session related settings
	session
	project
	gui

