Mlxtran

MonolixSuite Language Reference

www.mlxtran.lixoft.com

Structural model

DESCRIPTION: [LONGITUDINAL]

 $input = \{ \}$

PK:

EQUATION:

DEFINITION:

OUTPUT:

output = { } table = { }

DESCRIPTION: Optional text describing the model

[LONGITUDINAL] section

Contains the structural model with:

input = { } list

parameters that are estimated or used as regressor variables.

permits to define PK models using macros, and to link the administration information of the data set with the model.

EQUATION: block

mathematical equations including ODEs and DDEs.

DEFINITION: block

used to define a random variable and its probability distribution.

OUTPUT: block

contains the [LONGITUDINAL] section outputs.

output = { } list

identifies the predictions or the modeled outputs that are fitted against the data set observations.

table = { } list

parameters or variables outputted in the result folder of Monolix.

Modeling discrete data with DEFINITION:

Time-to-event model

DEFINITION:

Event = {type=event, maxEventNumber=1, hazard=h}

- Event: name of the random variable, can be replaced by any name. It should be listed in the outputs, to be matched to the observed data
- hazard: hazard function, can be defined via an expression in **EQUATION:**
- · Indicating the maximum number of events in the maxEventNumber argument speeds up calculations.

Count model

DEFINITION:

CountNumber = {type=count, P(CountNumber=k) = ...}

- CountNumber: name of the random variable, can be replaced by any name. It should be listed in the outputs, to be matched to the observed data.
- k is a mandatory name for the values. The probability mass function P(CountNumber=k) should be defined as a function of k and individual parameters.
- · It is possible to define directly the log of the probability mass function with: log(P(CountNumber=k)) = ...}

Categorical model

DEFINITION:

level = {type = categorical, categories = $\{0, 1, 2\}$, logit(P(level <=0)) = th1 logit(P(level <= 1)) = th1 + th2)

- · categories: list of ordered categories, as increasing successive integers.
- P(Y=i): probability of a given category integer i, for the observation named Y. A transformed probability can be provided of a direct one. The transformation can be log, logit, or probit.
- · The model is completely defined by the probability mass functions P(Y=i) for each category, or the cumulative probabilities
- When the value of a probability can be deduced from others, its definition can be spared.

St Simulations Plus

PK: macros

Arguments

Compartment characteristics

compartment characteristics		
amount	Variable for drug amount in	
	the compartment	
concentration	Variable for drug concentration	
	in the compartment	
volume, V	Compartment volume	
Administration		
adm	Administration type to map	

	· -
adm	Administration type to map
	with ADMINISTRATION ID from
	dataset, otional: default value
	is 1

Targets

ruigets	
cmt	Label of compartment (integer)
target	ODE variable

Absorption

Tk0	Zero-order duration
ka	First-order rate
р	Fraction of absorbed drug

Delays

Tlag	Lag time
Ktr	Transit rate
Mtt	Mean transit time
Transfers	

kt	Transfer	rate	e f	rom	one
	compartr	nent to	o and	other	•
kij, kji	Transfer	rat	es	be	etween
	compartr	nents i	and	j	
ke0	Transfer	rate	to	an	effect
	compartr	nent			

k	Elimination rate
Cl	Clearance
Vm, Km	Michaelis-Menten elimination

pkmodel macro

pkmodel(V. k/Cl/(Vm. Km).

Tlag/(Ktr, Mtt), p, Tk0/ka, (k12, k21), (k13, k31), ke0) Defines common PK models with a list of

parameters. Single administration type and single elimination only.

Administration macros

Administration macros apply the doses from the dataset to the model. Dose types indicated in the column ADMINISTRATION ID are mapped with the argument adm.

Targeting a compartment

```
absorption(adm = ..., cmt = ...,
             Tlag/(Ktr, Mtt), p, Tk0/ka)
```

For first-order or zero-order absorption arriving in cmt compartment.

iv(adm = ..., cmt = ..., Tlag, p)

For bolus or infusion into cmt.

Targeting an ODE variable

depot(adm = ..., target = ..., Tlag/(Ktr, Mtt), p, Tk0/ka)

For first-order or zero-order absorption, bolus or infusion. Amount applied to the ODE variable in target.

reset(adm = ..., target = ...)

Resets the target variable to its initial value at the corresponding dosing times in the dataset (dose value not used).

empty(adm = ..., target = ...)

Sets the target variable to 0 at the corresponding dosing times in the dataset (dose value not used).

Compartment macros

compartment(cmt = ..., amount/concentration = ..., volume = ...)

Defines a compartment that can be used in other macros. Needs to defined first.

peripheral(kij, kji,

amount/concentration = ..., volume = ...)

Defines a peripheral compartment of label j with two transfers of drug amount from and toward the compartment of label i.

effect(cmt = ..., ke0, concentration = ...

Defines effect an compartment with transfer of drug compartment cmt.

transfer(from = i, to = j, kt)

Unidirectional transfer process from compartment i to compartment j.

Elimination macro

elimination(cmt = ..., k/Cl/(Vm, Km))

Defines an elimination from compartment cmt.

Legend:

/: Mutually exclusive (): Mutually dependent

Mandatory arguments

Syntax for equations and ODEs

Syntax

ddt x: time derivative of variable x (x can be any name)

a==b, a=<b, a<b, a>=b, a&b, a|b: logical operators

t 0: initial value of time

x 0: initial value of variable x

if, elseif, else, end: conditional statements

a*b, a/b, a^b: math operators

exp, log, log10, sqrt, cos, sin, factln, max, min ...: math functions

Keywords

t: time

tDose: time of the last administered dose amtDose: amount of the last administered dose

inftDose: infusion time of the last administered dose

delay(x,tau): delay function for DDEs

odeType = stiff: use a stiff ODE solver (add in EQUATION:)

Comments begin with;

Mlxtran

MonolixSuite Language Reference: examples

St SimulationsPlus

www.simulations-plus.com

Two-compartment model with iv bolus/infusion and Michaelis-Menten elimination

This model is available in the PK models library.

```
[LONGITUDINAL]
input = {V, Vm, Km, k12, k21}
EOUATION:
Cc = pkmodel(V, Vm, Km, k12, k21)
OUTPUT:
output = Cc
```

Two formulations: 1st order absorption and mixed 0-order/1st order absorption

```
[LONGITUDINAL]
input = {V, ka, Tk0, ka2, Fr, k}
compartment(cmt = 1, volume = V, concentration = Cc)
absorption(adm = 1, cmt = 1, ka)
absorption(adm = 2, cmt = 1, Tk0, p = Fr)
absorption(adm = 2, cmt = 1, Tlag = Tk0, ka = ka2,
          p = 1-Fr
elimination(cmt = 1, k)
OUTPUT:
output = Cc
```


The two formulations should be distinguished in the dataset with the column ADMINISTRATION ID.

PK-urine: joint model with plasma concentration and amount in urine

```
[LONGITUDINAL]
input = {ka, Cl, V, p urine}
depot(adm = 1, target = Ac, ka)
empty(adm = 2, target = Aurine)
EQUATION:
k urine = p urine*C1/V
k_non_urine = (1-p_urine)*Cl/V
         = 0
Ac 0
        = 0
Aurine_0 = 0
ddt_Ac
           = - k_non_urine*Ac - k_urine*Ac
ddt Aurine = k urine*Ac
Cc = Ac/V
thalf = log(2)*V/Cl
OUTPUT:
output = {Cc, Aurine}
table = {thalf}
```


emptying of compartment are encoded in the dataset as pseudo-doses with ADMINISTRATION ID = 2.

A table of values for the elimination half-life thalf is outputted in the result folder at each observation time.

Auto-induction model for time-varying clearance

```
[LONGITUDINAL]
input={Tk0, V, Cl, Kenz, IC50}
                                 Kenz
                                         Enz
PK:
depot(target=Ac, Tk0)
EQUATION:
t 0 = 0
Ac 0 = 0
Enz 0 = 1
ddt Ac = - C1/V*Ac*Enz
ddt Enz = Kenz - Kenz * (1 -
                                The drug stimulates its
          Cc/(Cc+IC50)) * Enz
                                own metabolism via
Cc = Ac/V
                                induction
                                             of
                                                   the
                                metabolic
                                               enzyme
OUTPUT:
                                 expression.
```

PK – PD – TTE: joint model for plasma concentration, tumor volume and death

output = {Cc}

```
[LONGITUDINAL]
input = {V, Cl, Q, V2, Vm, Km, Mini, kp, kd,
         R, lambda0, betaM}
:plasma concentration model
compartment(cmt = 1, amount = Ac, volume = V,
            concentration = Cc)
peripheral(k12 = 0/V, k21 = 0/V2)
elimination(cmt = 1, Cl)
elimination(cmt = 1, Vm, Km)
iv(adm = 1, cmt = 1)
                                          statement
                                 odeType = stiff
;tumor growth model
                                 permits to use a
EQUATION:
                                 stiff (implicit) ODE
odeType = stiff
t 0 = 0
                                 solver.
M 0 = Mini
ddt M = (kp - kd*Cc*exp(-R*t))*M
Msat = min(1000, M)
;time-to-event (death) model
lambda = lambda0*exp(betaM*Msat)
DEFINITION:
death = {type = event, eventType = exact,
         maxEventNumber = 1, hazard = lambda}
OUTPUT:
output = {Cc, M, death}
```

Dose-dependent bioavailability

Using dose-related keywords: amtDose

```
[LONGITUDINAL]
input = {ka, k, V, D50}
F = amtDose / (amtDose + D50)
Cc = pkmodel(ka, V, k, p = F)
OUTPUT:
output = {Cc}
```

Using a regressor containing the dose information

```
[LONGITUDINAL]
input = {ka, k, V, DoseReg, D50}
DoseReg = {use = regressor}
F = DoseReg / (DoseReg + D50)
Cc = pkmodel(ka, V, k, p = F)
OUTPUT:
output = {Cc}
```

Count model: zero - inflated Poisson model

```
[LONGITUDINAL]
input = {lambda0, nu, f}
EQUATION:
lambda = lambda0*exp(-t/nu)
DEFINITION:
CountNumber = {type = count,
    Pk = exp(-lambda)*(1-f) + f
    Pk = exp(k*log(lambda) - lambda
         - factln(k))*(1-f)
  P(CountNumber = k) = Pk
OUTPUT:
output = CountNumber
```

The output is the number of events (in {0, ..., infinity}) with an inflation of zero counts. Lambda decreases exponentially over time.